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I. INTRODUCTION 

A major problem in the field of surface chemistry has 

been, and still is, the evaluation of absolute surface areas. 

It has been appropriately stated by Young and Crowell (1) 

that 

"The value to scientists and technologists of 
a universal reliable and relatively simple method 
I'or measuring the area of a solid can hardly be 
over-estimated, for it is a highly significant 
parameter in nearly all physical and chemical 
processes involving powdered solids." 

In general, the methods for evaluating the surface area 

of an adsorbent can be classified into two broad groups. 

First of all are the methods that depend upon the molecular 

area (n^) of the adsorbate molecule which can be calculated 

assuming that the adsorbed molecules have the same packing 

as the molecules in a condensed phase have in their plane 

of closest packing by 

where M is the molecular weight, N is Avogadro's number and 

Ô is the density of the condensed phase (solid or liquid). 

The monolayer capacity, (volume) or (weight), is 

defined as the quantity of adsorbate which would be required 

to cover the adsorbent with a monomolecular layer only. 

The surface area of the adsorbent is given by 

( 1 . 1 )  
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A = 0.269 a V (1.2) 
mm 

2 ® 2 "3 
where A is in m /g, is in A and is in cm at STP/g. 

The determination of generally depends upon the measurement 

of the adsorption isotherm of the particular adsorbate being 

used (usually nitrogen) at or near the boiling point of the 

adsorbate. The adsorption isotherm is defined as the relation­

ship between the amount adsorbed and the equilibrium pressure 

above the adsorbent. The various methods by which V can be 
m 

evaluated from the adsorption isotherm will be discussed in 

the next section. 

Secondly, several methods have been developed over the 

years that lead to the surface area without explicit assumption 

as to the value of and the corresponding determination of 

. This second group of methods can be further divided into 

two subgroups. The first subgroup contains those methods 

which are based upon the thermodynamic properties and relation­

ships of the layer or layers of adsorbed molecules. The 

second subgroup contains the methods based upon high tempera­

ture adsorption theories and the methods which do not depend 

on the adsorption properties of the adsorbent. 

The interpretation of adsorption data taken at or near 

the boiling point is difficult, especially for porous adsorbents, 

due to multilayer formation, capillary condensation and so 

on. The interpretation of high temperature adsorption data 
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cannot be completely unambiguous, but offers a fresh approach 

to the study of physical adsorption and evaluation of surface 

areas of solid adsorbents. Hence, a series of adsorption 

experiments were conducted on three different adsorbents 

usin# a number of gases over a range of temperatures to 

investigate the applicability of high temperaure adsorption 

data to the evaluation of surface areas. At the same time, 

different experimental techniques were evaluated as to their 

applicability in the study of high temperature physical 

adsorption. 
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II. MEASUREMENT OF SURFACE AREAS 

A. General Background 

This review will be limited to various methods that have 

been developed for the evaluation of surface areas based on 

physical adsorption measurements, with the theories of physical 

adsorption and associated phenomena, such as capillary condensa­

tion, discussed only to the extent needed to establish a method 

for the evaluation of the surface area of an adsorbent. The 

general literature on physical adsorption and the evaluation 

of surface areas from 1900 to the present has been covered 

extensively by McBain (2), Brunauer (3), Young and Crowell (1), 

and by Gregg and Sing (4). Also, Ross and Olivier (5) have 

written an excellent monograph on physical adsorption con­

cerned primarily with their own work in which they make 

extensive use of a two-dimensional van der Waals equation of 

state for the adsorbed phase. 

In general, solid adsorbents can be either porous or 

non-porous. It shall be convenient to follow Dubinin (6) 

and classify the pores of a porous adsorbent according to 

the average width of the pore, i.e., the diameter of a 

cylindrical pore or the distance between the walls of a slit-

O 
shaped pore. Pores with average widths below ~20 A are 

O 
described as micropores, those with widths between -20 A and 
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O 
~200 A as transitional pores and those with widths above 

O 
200 A as macropores. Dubinin (7) also classifies adsorbents 

in which the pores are primarily micro as the first structural 

type and adsorbents in which the pores fall in the transition­

al and macro range as the second structural type. It is 

also convenient to use the classification of Brunauer, Deming, 

Demin# and Teller (BDDT) (8) shown in Figure 1 when referring 

to the various types of adsorption isotherms. Type I iso­

therms are associated with monolayer adsorption and are usually 

obtained with adsorbents of the first structural type. Type 

II-V isotherms are associated with multilayer adsorption. 

Type IV and V isotherms are associated with capillary conden­

sation effects and generally occur when the adsorbent is of 

the second structural type. 

In the following discussion, the methods for the 

measurement of surface areas will be divided into those 

involving low temperature adsorption at or near the boiling 

point of the adsorbate and those involving high temperature 

adsorption, usually above the adsorbate's critical temperature. 

B. Low Temperature Adsorption 

1. Non-porous adsorbents 

It is generally accepted now that multilayer adsorption 

on non-porous adsorbents leads to Type II and III isotherms 

of the BDDT classification (Figure 1). In 1935, Brunauer and 
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Emmett (9), in an attempt to estimate the surface area of iron 

synthetic ammonia catalysts, measured the isotherms for a 

number of f>ases near their boiling points. These were Type 

II isotherms. Brunauer and Emmett considered that the linear 

part (B-D in Figure 1) indicated the build up of the second 

layer of adsorbate on the surface, and that the extrapolation 

of this line to zero pressure (Point A in Figure 1) should 

represent the volume of gas required to fill the monolayer 

(V^). Later, Emmett and Brunauer (10) expanded their adsorption 

studies to include additional iron-synthetic ammonia catalysis 

and considered all points A-E (Figure 1) as possibly represent­

ing the completion of the monolayer. The minimum deviation 

in the calculated surface area for a given adsorbent for the 

series of adsorbates was given by Point B. Additional evidence 

for the use of Point B to determine the monolayer capacity was 

provided by the heats of adsorption and has been supported by 

various other studies (4). Although the determination of the 

actual point is rather arbitrary, the Point B method for 

estimating the monolayer capacity has found considerable use, 

especially on adsorbents whose isotherms exhibit well-defined 

'knee-bends', which quite often are Type I rather than 

Type II. 

The evaluation of the monolayer capacity (V^) quantitatively 

rather than qualitatively (i.e. Point B) requires an analytical 

expression for the adsorption isotherm and hence the 
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development of an adsorption theory. Prior to the 

development of the now famous BET theory in 1938, only the 

Langmuir equation (11) provided a means of evaluating V^. 

Discussion of the Langmuir equation will be reserved for 

the section on microporous adsorbents, sines although based 

upon a monomolecular model and analytically describing Type 

I isotherms, it gives reliable values only for adsorbents, 

known to contain micropores, which usually exhibit Type I 

isotherms. 

In 1938, Brunauer, Emmett and Teller (12), henceforth 

referred to as the BET theory, extending the kinetic approach 

of Langmuir to the case of multilayer adsorption, obtained 

V CP 

V = (p^ _ P) [1 + (c - 1) p/p^j 

which is known as the 'simple' or 'oo-form' of the BET 

equation, where P^ is the saturation vapor pressure and C is 

a constant defined by 

(E,-E, )/RT 
C = e ^ ^ (2.2) 

The difference E^-E^ represents the net heat of adsorption, 

i.e., the heat of adsorption in the first layer minus the 

heat of liquefaction. Equation 2.1 can be rewritten in a 

more useful form as 

P 1 . C-1 P /n 
V(P -P) - TT + TT - fT- (2.3) 

o m m o 

Hence, a plot of P/ V(P^-P) versus P/P^ should give a straight 
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line with equal to l/(slope + intercept). Therefore, the 

BET equation (2.3) can be regarded (13) as an analytical means 

of locating Point B. Applicability of Equation 2.3 is general­

ly restricted to relative pressures between 0.05 and 0.35. 

Unless stated otherwise, any reference to the BET equation 

will mean Equation 2.3. 

If the adsorption is restricted to a finite number of 

layers (n) such as on the walls of a capillary, then the 

BET treatment leads to the equation 

V C x  ( l - ( n + l ) x " +  n x " " * " ^ )  
V  =  —  ( 2 . 4 )  

(1-x) (1 + (C - l)x - Cx"+^) 

where x = P/P^. Equation 2.4 is generally referred to as the 

'n-layer* BET equation which reduces to Equation 2.1 for 

n = 00 and the Langmuir equation (2.15) for n = 1. 

The numerous criticisms as well as modifications of the 

BET theory have been discussed in detail (3) and will not 

be repeated here. The correctness of the monolayer capacity 

(BET as well as Point B) has also been discussed in detail (4). 

Both the oo-foi*m and the n-layer BET equations have been 

derived by Hill (14) and others using statistical mechanics. 

A rather extensive comparison of nitrogen BET surface 

areas with "geometric areas" as determined by electron 

microscopy based on a particle size analysis of carefully 

prepared adsorbents and with BET areas determined using other 
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vapors has been given by Gregg and Sing (4). The agreement 

between nitrogen BET areas and the other areas is generally 

within 10 percent. 

At this point a few general observations with regard to 

the measurement of surface areas can and should be made. 

For non-porous adsorbents as well as porous adsorbents of the 

second structural type, the value of the surface area obtained 

is relatively independent of the physical model and method of 

calculation. This has led in many instances to the unfortunate 

use of the BET surface area in determining whether the surface 

area thus obtained is correct or incorrect. BET surface 

areas have also been reported for microporous adsorbents with 

little justification as to the applicability of the BET model 

2 
to these adsorbents. Areas as high as 3000 m /g have been 

reported for some charcoal^ which requires that approximately 

nine-tenths of the carbon atoms of the sample be available 

to the gas. 

An entirely different approach to the problem of low 

temperature physical adsorption is that of Ross and Olivier (5). 

Their approach makes use of the Gibbs adsorption equation (15) 

and various two-dimensional analogs of the van der Waals 

equation of state to obtain the adsorption isotherm indirectly. 

The two-dimensional van der Waals equation of state for the 

adsorbed phase accounts for intermolecular attraction and the 

concept of surface heterogeneity is introduced by dividing 
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the surface into a number of homogeneous patches with a Gaussian 

distribution of adsorptive potential energies among the patches. 

Alter a rather complicated process which leads to the matching 

of model isotherms with the experimental isotherm^ the mono­

layer capacity can be obtained. 

2, Porous adsorbents of the second structural type 

Adsorbents with transitional pores give rise to Type IV 

or V, rather than Type II or III, isotherms (Figure 1). 

Discussion in this section will be confined to Type IV 

isotherms. 

The analysis of the Type IV isotherms is generally as 

follows. Along the branch AB,monolayer and multilayer adsorp­

tion occurs on the walls of the transitional pores and on the 

free surface or macropores. The adsorption branch BCD and 

the corresponding desorption branch or hysteresis loop DFB 

is associated with "capillary condensation" in the transitional 

pores. At point D, the transitional pores have been completely 

filled with liquid-like material after which adsorption increas­

es very slowly on the outside of the particles along DE. 

Instead of the horizontal branch DC, the isotherm can approach 

the saturation axis along DG which is attributed to condensa­

tion in the macropores or in the interstices between particles. 

The capillary condensation hypothesis that the pores 

have all been filled with liquid adsorbate in the region DE 

implies that the liquid volume adsorbed should be the same for 
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all adsorbates. If the region DE is truly horizontal, the 

hypothesis is contained in a generalization given by 

Gurvitsch (16) for the uptake of vapor by adsorbents under 

condition of saturation vapor pressure, and it will be 

known as Gurvitsch's rule. Confirmation of Gurvitsch's 

rule for adsorbents with a highly developed transitional 

porous structure has been given in many cases (e.g. silica 

gels (17) ). 

The evaluation of surface areas for adsorbents exhibiting 

Type IV isotherms has followed two different approaches 

utilizing either the low pressure monolayer/multilayer region 

or the high pressure region where all of the transitional 

pores have been filled either through the process of multi­

layer formation or capillary condensation. 

In the low pressure region either Point B or BET equation 

(2.3) can be used to evaluate the surface area. If adsorption 

is restricted to n-layers due to the presence of the transi­

tional pores, it may be necessary to use the n-layer BET 

equation (2.4). Joyner ̂  (18) have described a method 

by which the n-layer BET equation can be put into linear 

form such that the parameters n, C and can be evaluated 

in a reasonably straightforward manner. 

Recently, de Boer and co-workers (19,20) have developed 

what is referred to as the "t-method" for analyzing nitrogen 

adsorption data to evaluate the surface area and to indicate 
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Lho s Lai" I ol capillary condensation. First of all, adsorption 

isotherms were obtained on a number of 'non-porous' adsorbents. 

A nearly universal curve was obtained when the statistical 

thickness of the adsorbed layer defined by 

t = 3.54 V^/V^ " (2.5) 

3 
where is the volume of nitrogen adsorbed in cm STP/g and 

Q 
is the BET monolayer capacity (Equation 2.3) in cm STP/g 

is plotted against the reduced pressure (P/P^). Application 

of the "t-method' to a porous adsorbent consists of plotting 

3 
V (cm STP/g) versus t at the corresponding P/P . A t-plot 

for an adsorbent containing transitional pores sufficiently 

large that adsorption can occur unhindered is shown in Figure 

2 (b). From the slope of the linear portion, the surface area 

can be calculated by 

A = 15.47 V^/t (2.6) 

2 
where A is in m /g adsorbent. The onset of capillary condensa­

tion is indicated by the upward turn of the plot at point F, 

The use of the high pressure region for evaluation of 

surface areas has followed two different approaches depending 

on whether or not an evaluation of the pore size distribution 

is also desired. From discussion originally presented by 

Thomson (21) for the equilibrium of a vapor at the curved 

surface of a liquid in a capillary and simple thermodynamic 
_ o 
'•'When referring to the t-method, t is in A. 
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considerations, the following relationships can be derived. 

The surface area of an adsorbent containing transitional 

pores is given by 

^s 

/ 1" Po' A = ̂  / In P /P dV (2.7) 
VV 

Vo 

where is the volume of liquid adsorbate corresponding to 

the beginning of capillary condensation, is the volume of 

liquid adsorbate at saturation, 7 is the surface tension of 

the liquid adsorbate and V is the molar volume of the 

adsorbate in liquid state. The application of Equation 2.7 

to the evaluation of surface area is restricted to adsorbents 

that contain pores large enough such that they cannot be 

filled from multilayer formation alone. The derivation of 

Equation 2.7 is independent of the size or shape of the 

capillaries. The relationship between the size and shape of 

capillaries is given by 

in P/P^ - - ̂  • ( 2 . 8 )  

where V is the molar volume of the liquid adsorbate and r^, 

rg are the radii of curvature of the liquid surfaces. For a 

cylindrical capillary, Equation 2.8 reduces to 

P/Po = - % (2.9) 
k 
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which is generally referred to as the 'Kelvin' equation where 

rj^ is the 'Kelvin® radius and it has been assumed that the 

liquid wets the walls of the pores. The 'Kelvin' radius 

in Equation 2.9 is related to the actual radius of the pore 

by 

fp = + t (2.10) 

where t is the thickness of the adsorbed layer defined by 

Equation 2.5. If the pores are slit-shaped instead of 

cylindrical,the 'Kelvin' radius is defined in terms of the 

diameter (i.e. width) of the pore by 

d = r^ + 2t (2.11) 

The interconversion of Equations 2.7 and 2.8 can be readily 

performed using the proper relationship between the 'Kelvin' 

radius, volume and surface area of the pore. 

Kistler, Fischer, and Freeman (22) developed an equivalent 

of Equation 2.7 where was determined by use of the Langmuir 

adsorption equation (11). Their procedure has found very 

limited application. Derjaguin (23) has derived a corrected 

form of Equation 2.7 that takes into account the adsorbed 

layer. The most extensive use of Equation 2.7 for the evalua­

tion of the surface area of transitional pores has been by 

Dubinin and co-workers (6,24). 

Equation 2.9 has been used very extensively in discussions 

of capillary condensation and associated hysteresis phenomena. 
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It has also been used to determine what are termed cumulative 

sur race areas and pore volumes. Surface areas are given by 

(2.12) 

for cylindrical pores and 

2AV 
Scum = =43% = E (2.13) 

for slit-shaped pores. Pore volumes are given by 

Vcum = EAVk (2-14) 

Above, r^ and d^ are the corresponding 'Kelvin' radii and the 

summations are performed over a distribution of radii calculated 

from the 'Kelvin' equation. Several treatments for the evalua­

tion of S and V for cylindrical pores (25-29) and 
oum Cum 

for slit-shaped pores (30-33) have been given which generally 

differ only slightly in mathematical analysis and computational 

procedure. 

Comparison of surface areas calculated from the low and 

high pressure regions of adsorption isotherms can only be 

made with reservations assuming that the adsorbent does not 

contain micropores. In cases where the proper branch of the 

adsorption isotherm (i.e. the equilibrium branch (34) which 

is the adsorption branch for ink-bottle pores and the 

desorption branch for slit-shaped pores) is used and where the 

thickness of the adsorbed layer t in Equations 2.10 and 2.11 
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is the same defined by Equation 2.5, the surface areas 

determined using the BET equation, Equations 2.6 or 2.7 and 

^cum near-perfect agreement. This is exactly what 

should be expected from the calculations which are nearly 

circular in nature. Considerable deviations do occur when 

difJerent methods are employed to correct for the adsorbed 

layer, when the shapes of the actual pores deviate widely 

from the idealized shapes and when micropores are actually 

present. Therefore, although a given surface area may agree 

with the BET surface area, it does not necessarily follow 

that either one or both of the surface areas represents the 

true area of the adsorbent. 

The list of methods by which the surface area of the 

adsorbent containing transitional pores can be evaluated has 

by no moans been exhausted. The methods employing low 

temperature adsorption data are generally based on empirical 

adsorption equations. 

3. Microporous adsorbents 

The classification of an adsorbent as microporous or as 

being of the first structural type does not preclude the 

existence of both transitional and macro pores. Generally, 

an adsorbent will have a polydisperse pore system with all 

types existing in various portions with a distribution of 

sizes. Active charcoals usually have a polydisperse pore 

system while oxide gels usually do not contain micropores. 
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Hence, the existence of micropores creates numerous problems 

in the interpretation of adsorption data and in ascertaining 

the true surface area of the adsorbent. 

In many instances the surface area of a microporous 

adsorbent quoted is that determined by use of the BET equation 

or Point B without any justification as to the applicability 

of these methods to microporous adsorbents. The values of 

the surface areas determined by these methods are also used 

in comparing values determined by other methods and as 

justification for the correctness of the values. The 

adsorption isotherm would be of Type I (Figure 1) if only 

micropores were present, but the presence of transitional 

and/or macro pores will give an adsorption isotherm mixture 

of Types I, II and IV. The Type I isotherm has been interpreted 

classically as representing monomolecular adsorption on pores 

so narrow that adsorption is limited to a monolayer with the 

isotherm plateau representing the completion of the monolayer. 

The Type I isotherm can be represented analytically by the 

Langmuir equation 

(2.15) 

which can be rewritten in the linear form 

PI P 
*t7 ~ VkVr 4" ( 2 . 1 6 )  
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where B is a constant at any given temperature. Therefore, 

Equation 2.16 can be used to evaluate the surface area of an 

adsorbent exhibiting a Type I isotherm. In many cases where 

the adsorption isotherm is a mixture of Types I and II, the 

Langmuir equation will represent the data much better than 

the BET equation. Obviously, the Langmuir equation will give 

a larger surface area than either the BET equation or the 

Point B method. 

There is considerable evidence available that the classical 

interpretation for the Type I isotherm is incorrect. The 

evidence includes surface areas as high as 3000 m /g for 

adsorbents giving Type I isotherms; the observations of 

Pierce, Wiley and Smith (35) for a particular charcoal that 

further activation increased the amount adsorbed by a factor 

of three but the isotherm was still Type I; and that in many 

instances, Gurvitsch's rule is obeyed for adsorbents exhibiting 

Type I isotherms. 

A discussion of microporous adsorbents would not be 

complete unless the work of Dubinin and co-workers was covered. 

Polanyi (36) formulated the potential theory of adsorption 

where the adsorption potential is given by 

e = RT In ̂  _ (2.17) 

but did not attempt to derive an expression for the adsorption 

isotherm. It is therefore necessary to find the distribution 
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of filled adsorption space (W) as a function of the adsorption 

potential. Dubinin and co-workers (37,7,24,38) have derived 

expressions for the adsorption isotherm through the following 

very simplified procedure. For a microporous adsorbent the 

distribution function is given by 

where is the limiting volume of adsorption space,which, if 

only micropores are present, is equal to the volume of the 

micropores, and K' is a constant for a particular vapor. 

Equation 2.18 represents the characteristic curve of the 

potential theory of adsorption and is independent of tempera­

ture. If the adsorption space is filled to the same extent 

by two different vapors. Equation 2.18 implies 

where is called affinity coefficient and to a first 

approximation is given by the ratio of the molar volumes of 

the vapors. Replacing K' and e' in Equation 2.18 with 

and E ̂  corresponding to a standard vapor (such as benzene 

at 20°C) and using Equation 2.19 the following is obtained 

for any vapor. 

W = exp (-K'e *2) ( 2 . 1 8 )  

(2.19) 

W = exp ( 2 . 2 0 )  
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The filled volume W of adsorption space in terms of the 

amount of vapor adsorbed (a) is given by 

W = aV (2.21) 

where V is molar volume of the liquified vapor. Substituting 

Equations 2.17 and 2.21 into Equation 2.20 yields as the 

equation for the adsorption isotherm 

W P 2 
a = — exp [-B —5 (log — ) ] (2.22) 

V p"' P 

which can be put into the convenient linear form 

P„ 2 
log a = C - D (log ̂  ) (2.23) 

W 
where C = log ̂  (2.24) 

rjy2 

and D = 0.434 B ^ (2.25) 

The important parameter in the preceding analysis is 

obtained by extrapolation of the plot log a versus 

[log (P^/P)] to Pq/P = 1. For an adsorbent that contained 

only micropores, the plot would be linear up to P^/P = 1 

and hence, would equal the volume of the micropores 

(V^j^) . But for most adsorbents, Equation 2.23 holds only for 

relative pressures below ~0.2 indicating the presence of 

transitional and/or macro pores requiring correction of 

values lor adsorption in these pores to obtain The use 
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of Equation 2.23 also provides a means by which more detailed 

information on the microporous structure could be obtained 

through the use of different adsorbates as "molecular probes". 

The use of Equation 2.23 actually requires that the molar 

volume (V) be known as a function of temperature and this is 

of critical importance at temperatures above the boiling point 

of the adsorbate. 

For adsorbents of the second structural type containing 

transitional and macro pores Dubinin and co-workers have 

assumed that the distribution of adsorption space is given 

by 

From an analysis similar to the previous case, the adsorption 

equation is found to be 

W = exp (-me) ( 2 . 2 6 )  

A p log ] 
T P 

a (2.27) 

The linear form is 

P 
log a' = M - N log p— ( 2 . 2 8 )  

where 
W 

M = log ̂  (2.29) 

and N = 0.434 A ̂  (2.30) 
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The range of applicability of Equation 2,28 is for relative 

pressures below 0.2; while Equation 2.27 indicates formally 

that W is the liquid volume adsorbed when P = P , since the 
o o' 

equation does not apply for this range interpretation of 

as total pore volume is incorrect. 

For an adsorbent of the mixed structural type containing 

the whole distribution of pore sizes. Equations 2.27 and 2.22 

can be combined to give the adsorption equation 

a'* = a * a + (1 - a) - a '  ( 2 . 3 1 )  

where a is simply the fraction of adsorption space contained 

in the micropores. 

Through the use of Equations 2.22 and 2.27 Dubinin and 

co-workers have extensively studied the pore system in numerous 

active carbons and oxide gels, 

Kaganer (39-41) has endeavored to apply Dubinin's 

treatment to the evaluation of surface areas of microporous 

adsorbents. He assumes that in the region of monomolecular 

adsorption Equation 2.18 represents the distribution of 

adsorption energy over the adsorption surface instead of the 

adsorption volume. This leads to the writing of Equation 

2.24 as 

C = log a^ (2.32) 

where a^ is the monolayer capacity which can be obtained 

2 
from the intercept of a plot of log a versus [log P^/P] . 
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Since the applicability of Equation 2.23 is generally 

restricted to relative pressures below 0.2, the extrapolation 

must be made over the most ill-defined region of the adsorp­

tion isotherm. Kaganer has compared the surface areas 

obtained by using Equation 2.32 in Equation 2.23 with surface 

areas obtained by use of the BET equation and the method of 

Harkins and Jura (42) for a wide variety of adsorbents and 

several adsorbates. General agreement within 2 percent is 

observed for high area adsorbents and within 5 percent for 

low area adsorbents. As a check on the assumption embodied 

in Equation 2.32, Kaganer measured the nitrogen adsorption 

isotherm on dehydrated chabazite at 90°K and all data points 

fell on a straight line when plotted according to Equation 

2.23. 

A few general comments on the work of Dubinin and 

co-workers are in order. A considerable amount of the data 

obtained by them is in the pressure range 10 ^ to 1 mm which 

is neglected in the adsorption studies of many workers, but, 

on the other hand, extrapolation is required to saturation 

vapor pressure to obtain the desired parameters. Application 

of the theory is usually limited to adsorbates at or below 

their normal boiling points and the presence of a distribution 

of pore sizes necessitates the use of appropriate correction 

factors in the evaluation of the various parameters. Although 

the theory can be considered as rather empirical, it has 
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provided the basis for the study of the porous structure 

of adsorbents. 

Kaganer's use of Equation 2.23 to represent monomolecular 

adsorption appears to be unjustified. The excellent agree­

ment observed when values of surface areas are compared does 

not necessarily validate any of the methods compared. There 

are reasons to suspect that one is measuring a 'pore volume' 

instead of determining the monolayer capacity. The adsorption 

of nitrogen by chabazite would appear to provide more 

evidence that Equation 2.23 should be used to represent volume 

filling of pores than monomolecular adsorption on the walls 

of the pores. The structure of chabazite has been discussed 

by Barrer and Kerr (43). The cavities in chabazite are 
O O 

approximately 11 A long with an average diameter of 6.6 A. 

Each cavity has six windows with an average free diameter of 

O 
3.9 A. Therefore, monomolecular adsorption in the usual 

sense cannot occur, but a 'volume filling* can occur. 

In the section on adsorbents of the second structural 

type, the t-method for evaluating surface areas was covered. 

If the distribution of pores sizes moves from the transitional 

to the micro region, a t-plot of the type shown in Figure 2 (a) 

is obtained. The original interpretation (19) of this type 

of t-plot concluded that multilayer adsorption occurred on all 

the surface until the break at BC where some of the pores 

have been filled by the process of multilayer adsorption and. 
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hence, the region CD represents additional adsorption on 

the remaining available surface. This interpretation assumes 

that the pores are slit-shaped. Recently, Sing (44) has proposed 

a more general interpretation for t-plots of the type shown 

in Figure 2 (a). He proposes that the region AB represents 

both micropore filling and multilayer adsorption on walls of 

the larger pores and that the region CD can then be extrapolated 

to the volume axis to give an effective origin at 0'. The 

I 
micropore volume can be calculated from and the surface 

area of the adsorbent (excluding the micropore area) can be 

calculated from the slope of O'CD. A similar analysis has 

been implied by de Boer and co-workers in discussing their 

results on carbon blacks (45). The approach of Sing appears 

to have an important advantage over that of Dubinin and 

co-workers in that no assumption as to the distribution of 

adsorption energy is required to obtain essentially the same 

information. 

C. High Temperature Physical Adsorption 

The transition from low temperature to high temperature 

adsorption is rather vaguely defined. The high temperature 

physical adsorption region shall be specified as occurring at 

sufficiently high temperatures that adsorption does not exceed 

one or two per cent of a monolayer. Hence, the temperature 

is sufficiently high that effects due to two-dimensional 
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condenstaion, capillary condensation, and multilayer formation 

can be ignored. 

There have been two different approaches taken in the 

development of high temperature adsorption theory, Halsey 

and co-workers (46) have treated the interaction of gases 

with solid surfaces in a manner analogous to imperfect gas 

theory. Barker and Everett (47) have used more conventional 

adsorption theory to obtain the same results. In the second-

order or Henry's Law region of the adsorption isotherm, both 

approaches give 

n^ = KjjAP (2.33) 

where n^ is the number of moles adsorbed. Kg the 'Henry's 

Law' constant per unit area and A the surface area. Hence, 

if Kjj can be evaluated either experimentally or theoretically, 

then the surface area of the adsorbent can be calculated. 

If small deviations from Henry's Law are taken into 

consideration, then,instead of Equation 2.33,the following 

is obtained 

"a " Ki(T)P + K2(T)p2 (2.34) 

where = K^A and Kg is a third-order interaction constant. 

The treatments of either Barker and Everett (47) or Sams 

et al. (48) give for the surface area (A) 
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A 
B 2 

(2.35) 

where Bg is the second virial coefficient for a two-

dimensional gas film. Hence, if Bg is known or can be 

calculated, A can be calculated. 

A more extensive development of the high temperature 

adsorption theory and application to the evaluation of surface 

areas will be given in subsequent sections. 

Bond and Spencer (49) have proposed a method based on 

Henry's Law for evaluating the surface areas of coals. They 

determined the amount of neon adsorbed by a coal of "known" 

surface area at 0°C and 1 atm pressure. A value for Kjj per 

unit area could then be calculated and subsequently used to 

calculate surface areas of other coals. Although there is 

a certain amount of merit to this proposal, the problem of 

recognizing the "known" surface area remains unsolved. 
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III. THEORY 

A. Simple Theory - Henry's Law 

1. Plane surface 

The simple theory will be derived in terms of a dilute 

gas interacting with a plane adsorbing surface where the 

nuclei of the surface atoms define the xy-plane. An extension 

of the simple theory will then be made for a capillary surface. 

As a molecule moves along a normal path towards the surface, 

its potential energy varies as the distance Z from the surface 

as shown in Figure 3(a). If it is assumed that the gas is 

so dilute that the potential energy of a gas is dependent 

only on its coordinates and that gas-gas interactions can be 

neglected, then the average concentration of gas molecules at 

any point in the adsorption field can be calculated from the 

Bolt^mann distribution law: 

C = exp (-E(Z)/kT) (3.1) 

By choice of energy reference, E —»• o as Z —oo, and so also 

C —^ as Z —>• 00 (Figure 3(b)). 

Use shall be made of the Gibbs definition of adsorption: 

the number of molecules adsorbed by an element of surface is 

Lhe excess of the number present, over and above the number 

which would be present if the bulk gas concentration were 

maintained up to a chosen surface separating the solid and 
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gas phases. Let Z = o be a plane passing through the 

nuclei of the surface atoms, the half space Z < o be the 

solid, the half space Z > o be the gas, and C(Z) be the gas 

concentration, moles/cc, at Z. Suppose C = o for Z < o, 

Lim C(Z) = C , and let Z = ^ be the Gibbs dividing surface. 
Z-K)0 ^ 
The surface excess referred to the plane Z = i is then 

i 00 

r=J C(Z)dZ +/ (C(Z) - C^) dZ (3.2) 

+ r (C(Z) - C^)dZ (3.3) 

Evidently varies linearly with so far as the Gibbs 

convention is concerned choice of ^ is arbitrary. Barker 

and Everett (47) have substantially chosen £ = S^, the position 

at which E(Z) = o (i.e. the distance from the surface at 

which the potential changes from attractive to repulsive), 

whereas Halsey and co-worker's statistical mechanical treat­

ment functionally chooses H = o. The surface excess is 

represented by the shaded areas in Figure 3(b). 

Substituting Equation 3.1 into Equation 3.3 with i = o 

gives 

00 

r = / (exp (-E(Z)AT)-l)dZ (3.4) 

o 
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()i I y 

00 

.im ^ =- f 
: -»-o o ^ 
Lim ^ - I (exp(-E(Z)/kT)-l)dZ (3.5) 

Assuming an ideal bulk gas so that = P/RT and substituting 

n^/A for r, Equation 3.4 becomes 

00 

n^ = AP (exp(-E(Z)/kT)-l)dZ (3.6) 

o 

n 
or Lim = K A (3.7) 

P-% 

where _ 
CO 

RT f 
(exp(-E(Z)/kT)-l)dZ (3.8) 

Equation 3.7 is identical to Equation 2.33 and hence, 

represents Henry's Law for the system. If K„ can be 
H 

evaluated experimentally (e.g. Bond and Spencer (49) ) or 

calculated theoretically by use of Equation 3.8, then the 

surface area A can be calculated from experimental limiting 

values of n^/P. The use of Equation 3.8 to calculate 

requires that E(Z) be known. The evaluation of theoretical­

ly will be covered in a later section. 

It is usual to define an "excess volume" (V^^) as the 

volume that n^ moles of adsorbed gas would occupy if present 

at a pressure P, or 



www.manaraa.com

31 

also. 

n RT 

Vex - (3 9) 

V° = Lira V = K„A • RT (3.10) 
ex p_^ ex H 

Hence, 
00 

= A J (exp(-E(Z)/kT)-l)dZ (3.11) 

o 

Hitherto it has been assumed that the system under 

consideration consists of a solid adsorbent in the presence 

of n moles of gas and hence an excess volume is defined. If 

the number of moles of gas adsorbed is directly measured by 

an experimental technique (gravimetrically with a vacuum 

microbalance) Hansen (50) has shown that if the solid structure 

is undistorted near the surface the measurement yields an 

unambiguous volume excess referred to the plane £ = o. But, 

most experimental techniques used in adsorption studies deter­

mine the volume of gas adsorbed and hence the excess volume 

by an indirect measurement. Defining nRT/P as (the apparent 

volume of the vessel containing the adsorbent when n moles of 

gas are introduced), the excess volume is given by 

Vex - " (3 12) 

The use of Equation 3.12 to calculate requires that V, 

the volume of the vessel minus the volume of the solid or 
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the "dead-space" volume, be known. The previous discussion 

has implied that for large T, = oj hencg V = V^. In 

general, it is either impractical or undesirable to determine 

V in this fashion. Hence, the usual procedure is to use a 

"non-adsorbed" gas such as helium, hydrogen, or neon to obtain 

V. Making use of the Boltzmann distribution function, the 

apparent volume (V^) of an adsorbed gas is given by 

00 00 

Lim = Lim ^ ̂  / C(Z)dZ = A f exp(-E(Z)/kT)dZ (3.13) 
P-K5 P-K> o ^oJ J 

o o 

and for a non-adsorbed gas the apparent volume (V^) is given 

by 
00 

Lim V = Lim ^ = A / exp (-E«(Z)/kT)dZ (3.14) 
P-H> ^ o V 

o o 

whence, the excess volume (V°^) is obtained as 

00 

V° = Lim V - V' = A r fexp(-E(Z)/kT)- exp (-E» (Z)/kT)]dZ 
ex p_^ a a (3.15) 

In order to reduce Equation 3.15 to 3.11 it is necessary 

to assume that E'(Z)/kT is zero for all Z. For practical 

purposes, the assumption can be safely made for helium at 

ice temperature and for hydrogen and neon above room temperature 

for values of Z greater than the value for the adsorbed 

gas. 
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The previous discussion has been an attempt to examine 

more closely the assumptions and approximations inherent in 

the theoretical as well as experimental evaluation of Henry's 

law constant and hence, the surface area of a solid from 

high temperature adsorption data. From a practical point of 

view, it is impossible to obtain the experimental accuracy 

necessary to distinguish between approximate and exact 

theoretical treatments. 

Up to this point it has been presumed that the potential 

energy function E(Z)/k is known, but in practice it is 

necessary to assume an analytical form for E(Z)/k, which 

is impossible to verify exactly through adsorption studies. 

The representation E(Z)/k implies that the potential energy 

function is only dependent upon the distance from the surface 

and not upon the position on the surface. In more usual 

terms, the surface is treated as being homogeneous rather 

than heterogeneous. The treatments could be generalized 

simply by replacing the surface area A by a double integration 

over the surface. 

2. Capillary surfaces 

The treatment of high temperature adsorption on a 

capillary surface is exactly the same as that for a plane 

surface except for a change in coordinate system. If it is 

assumed that surface exists as cylindrical capillary holes, 

and if the coordinate axis lies on the axis of the cylinder. 
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then the surface excess per unit area of capillary is given 

by 
R 2tr 

1' = / / [C(e,r) - C^(e,r)]rdedr (3.16) 

o o 

where R is the radius of the cylindrical capillary surface 

passing through the surface atoms. Since the potential energy 

field of the solid is cylindrically symmetrical, the usual 

Boltzmann distribution function can be used; hencg the 

equivalent of Equation 3.5 for a cylindrical capillary is 

given by 

R 

Lira TT- = À f [exp(-E(r)/kT)-l]rdr (3.17) 

CcT» o /o 

which can be written in the form of Equation 3.11 as 

R 

[exp(-E(r)/kT)-l]rdr (3.18) 

o 

or in dimensionless form 

(exp(-E(r/Sj/kT)-l](r/R)d(r/S^) (3.19) 

o 

A brief comment on the concept of a bulk gas concentration 

in a capillary is in order. For reasonably large capillaries 

the distinction between a curved surface and a plane surface 

ceases to exist, but for capillaries with diameters on the 

= / 
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order of molecular dimensions the overlap of potential energy 

fields becomes appreciable resulting in an increase in the 

concentration above that for a plane surface with the same 

free volume/surface area ratio. 

B, The Two-Dimensional Gas Film Model 

If only small deviations from Henry's Law behavior are 

assumed, and if -E^'gAT is sufficiently large, then the 

"adsorbed gas" can be treated as a "two-dimensional gas" 

moving in a plane parallel to the solid surface, but at a 

mean distance from the surface. The extent of the 

adsorbed gas is given by the shaded areas under the curve in 

Figure 3(b) which was calculated for -E^g/kT = 3 for convenience 

in plotting. Most systems of experimental interest have values 

of -Ejg/kT > 5 which confines the adsorbed gas to an even 

smaller region about Z^. In addition to the two-dimensional 

motion, there is a vibrational motion of the molecules perpen­

dicular to the surface which is governed by the curvature of 

the potential energy curve at its minimum. It can be easily 

shown that for a 3-9 potential function (Equation 3.34) the 

mean square displacement is given classically by 

<(q^/Z^)>= [kT/27(-E|g)] (3.20) 

'•'eXo is the minimum potential energy for gas-solid 
inLeracTlons. 
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where q = Z - and the (3-9) potential energy function has 

been treated as a simple harmonic function near the minimum. 

For -E^g/kT >5, the root mean square displacement 

is always less than 0.086 Z. Therefore, the initial assump­

tion of the two-dimensional gas model is reasonable. 

Statistical mechanical treatments of the two-dimensional 

gas model have been given by Sams ̂  jJ. (48) and Barker and 

Everett (47). Barker and Everett have also given a simplified 

treatment which shall be followed here. The virial equation 

of state for an imperfect two-dimensional gas is 

<t>A = n^RT ( 1 + Bgn^/A + ...) (3.21) 

where $ is the spreading pressure and B„ is the two-dimensional 

second viral coefficient. The Gibbs adsorption equation (15) 

is 

Ad» = n^RT d In P + BdP (3.22) 

where B is the second virial coefficient of the bulk gas. 

Differentiating Equation 3.21 and substituting Equation 3.22 

in the result gives upon rearrangement 

R Bp 
d In ̂  ̂  dP - 2 ̂  dn^ (3.23) 

Integration of Equation 3.23 making use of Lim n /P = K A = 
P-*o ^ H 

gives 

n ] BP 2B„n 

P-' K[ = iRT r~ (3 24) 
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For small adsorptions, Equation 3.24 can be rewritten in 

exponential form, and the exponential expanded to first order 

terms. This gives 

P 1 P A RT 
(3.25) 

Experimentally and theoretically (47,48) it has been shown 

that n^ can be written as a power series in the pressure 

= K^(T)P + K2(T)P^ + ... (2.34) 

Substituting Equation 2.34 into 3.25 and ignoring the term 

containing the product K^Kg yields 

A —B- (3.26) 

®2 ^2 ~ ^1 RT 

Theoretically B2(T) is given by 

00 

BgCr) = - Nir I" [exp(-E*(r)/kT)-l]rdr (3.27) 

where N is Avogadro's number and E'''(r) is the potential energy 

function between two adsorbed molecules. Hence, if E'''(r) is 

known, then B2(T) can be calculated and if experimental values 

of A/BgXT) are evaluated using Equation 3.26, then the surface 

area A of the adsorbent can be calculated. 
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C. Statistical Mechanical Theory 

As stated in the last two sections, the application of 

the principles of statistical mechanics to a system of N 

molecules in the presence of a solid surface give essentially 

the same results as the simple approaches which is, of course, 

fully expected. The differences lie not in the basic 

equations but in the small "correction" term or terms. Only 

a very brief outline of the statistical mechanical theory will 

be given. 

The total potential energy U of N gas molecules in the 

potential field of a solid adsorbent can be written as the 

sum of separate gas-solid interaction potentials, E(R^% and 

the gas-gas interaction potentials u(R.,) . U is given by 

N N N-1 
U = Z: E(R.) + E L u(R.. ) (3.28) 

i=l ^ j>k k=l 

The partition function Z is then 

2./amkT\ ' — f...fexp - — dR ...dR„ 

\ hM N! J J kT 1 (3 2,^ 

This is developed by the standard methods of the theory of 

imperfect gas with the exact procedure dependent upon the 

desired end result. 

Halsey and co-workers (46,51) have preferred to treat 

the interaction of gases with a solid surface by a virial 
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coefficient treatment that can be written as 

n = — P + ^̂ 2 + • • • (3.30) 
^ RT (RT) 

where B^g and are the second and third-gas surface virial 

coefficients respectively. Comparison of Equations 3.30 and 

2.34 shows that K^(T) = B^g/RT and KgC?) = 

Therefore, B^g is effectively the Henry's Law constant and 

theoretically is given by 

00 

Bas = A J [exp (-E(Z)/kT)-l]dZ (3.3l) 

which is equivalent to Equation 3.11. 

The extension of the statistical mechanical treatment 

to the two-dimensional gas model by Sams £t jQ. (48) is along 

the same lines as the simple treatment given in the last 

section. Barker and Everett (47) have given a more formal 

statistical mechanical treatment which gives the Henry's 

Law model in the limit of zero pressure and the two-dimensional 

gas model when third-order interactions are included. The 

formal theory for the two-dimensional model gives 

A 2K 2 

(B„-ct) ~ ~ 3K,B (3.32) 

S^-RÎ-

which differs from Equation 3.26 only in the correction term 

involving the bulk gas second virial coefficient and the 
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inclusion of a which corrects for nonplanarity of the adsorbed 

phase. 

D. Evaluation of Second Virial Coefficients 

1. Introduction 

The evaluation of second virial coefficients for gas-

surface interactions or Henry*y Law constants and the second 

virial coefficient for a two-dimensional gas as defined by 

Equations 3.11, 3.19 and 3.27 depends upon knowing the 

interaction potential as a function of distance. Initially, 

Steele and Halsey (46,52) assummed that the potential consisted 

of a London inverse sixth power attractive potential coupled 

with a hard sphere repulsive potential for molecular-molecular 

interactions. Since then, numerous authors (53 -56) have 

used a Lennard-Jones type potential function which in a 

generalized form is given by 

E(r) = - ar ^ + Pr ̂  (3.33) 

The special problem of the effect of a solid surface on the 

interaction potential between adsorbed molecules has been 

attacked by Barker and Everett (47) and by Sinanoglu and 

Pitzer (57). 

2. Gas-surface second virial coefficients 

a. Plane surface In general, Equation 3.33 should 

be summed over all the atoms of the solid, but is usual 

practice to replace the summation by integration over all 
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the atoms of a semi-infinite solid to yield for p = 6, q = 12 

(3.34) E(X) - % 3 Y~ 3 1 Y~ 9 
2" ̂  - 2 % 

where X = Z/Z^ and E^g is the minimum potential energy of gas 

surface interaction at Z = Z^. The convention used through­

out this dissertation is that all attractive energies are 

negative. Many of the previous equations contained the 

parameter S^, the value of Z at which E(X) =0. By use of 

Equation 3.34 it can be easily shown that 

S = 3"1/G 2 (3.35) 
o o 

It shall be convenient to rewrite Equation 3.31 in dimension-

less form as 

B °° 

^ = J [exp(-E(X)/kT)-l]dX (3.36) 

The integral can be evaluated for E(X) given by Equation 

3.34 with the result 

r 1/3 ^ 3/2 n 

I "• i ' (^)" "> 

where t = - E^g/kT. Therefore, it is readily seen that 

evaluation of B^g depends upon knowing both t and the product 

AZ^ which is usually referred to as the capacity factor. 

) 
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The preceding discussion suggests the following comments 

on notation. In general, the notation used depends upon the 

basic theoretical approach, i.e., from the surface excess and 

volume excess approach or by the statistical mechanical 

imperfect gas approach. The definition of the excess volume 

by Equation 3.12 is valid for any concentration of gas above 

the adsorbate. The expressions given by Equations 3.11 and 

3.18 for the excess volume, for plane and capillary surfaces 

respectively, are only exact in the limit of zero pressure 

as implied by Equations 3.5 and 3.17 respectively. Likewise, 

Equation 3.31 for B^g is only exact in the limit of zero 

pressure. To summarize, 

Lim = V° = B.q = • (RT) = (T) • (RT) (3.38) 
jp 0̂ GX ©X Ao xl X 

Also, in the region of small deviations from Henry's Law 

behavior 

^ = KgCT) • (RT)2 (3.39) 

Henceforth, shall be used to represent experimental values 

of Henry's Law constant K^A or K^(T) and B^g as the theoretical 

values of the same constants. Inasmuch as the theoretical 

value of dV^^/dP is of no interest in the present work, C^^g/ 

RT will be used to represent its experimental value. 
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The evaluation of the gas-solid interaction potential 

-E''\„/k and the capacity factor AZ^ requires that V° be 
AD O ©X 

determined as a function of temperature and the use of a 

procedure such as 

E In V° - L In B._/AZ_ = In AZ_ S 1 (3.40) 
T T ® 

where the summation is performed over all experimental points. 

î*î 
In effect -E^g/k has become an adjustable parameter which can 

be used to minimize the sum (V°^ - The slope of the 

plot In versus 1/T can be used as an approximate value of 

5*C 
-E^g/k. If the value of is known or can be calculate^ then 

the surface area A of the solid can be evaluated. 

The above evaluation of the capacity factor AZ^ is 

rather complicated and generally obscures the relationship 

between the parameters. To increase the ease of parameter 

evaluation and to clarify the relationship between the para­

meters, an asymptotic expansion valid for large t has been 

developed by Hansen and Murphy (58) for the evaluation of the 

right hand side of Equation 3.36 and is given by 

«AS - t' - -Mit + 1 

or to about the same approximation 

«AS ^ + in AZ. 
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, 175 T 109480 I T (-> ao\ 
^16 93312 1 U.4 ;̂ 

î'î 
where = -E^g/k. Murphy (59) has shown that Equation 3.41 

and 3.37 are equivalent for t > 4. 

It can be seen from Equation 3.42 that if the left side 

is plotted against 1/T,then, in the zeroth approximation, the 

limiting slope equals -E^'g/k and the capacity factor AZ^ can 

be calculated from the intercept. The third and fourth terms 

on the right side of Equation 3.42 are correction terms to 

be used in successive approximations. They are calculated 

and then subtracted from the left hand side of the equation 

after which the limiting slope and intercept are once again 

determined. Three cycles are sufficient for convergence. 

Although it is not obvious from Equations 3.42, the intercept 

1/2 
In 

2a 
27T^ 

is dependent upon the curvature of the potential minimum as 

well as the depth of the potential well. (See Hansen and 

Murphy (58) for more details.) 

b. Capillary surface The evaluation of the second 

gas-surface virial coefficient for a capillary surface by 

Equation 3.19 necessitates the evaluation of E(r/S^) for 

various values of the capillary radius R. The capillary model 

of Steele and Halsey (52) shall be extended to replace their 

"12 
hard sphere repulsive potential with an r~ repulsive 
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potential. It is convenient to identify the attractive 

part of Equation 3.33 with London forces for two isolated 

molecules as 

6 E(r) = - C/r 

and the entire potential as the Lennard-Jones function 

(3.43) 

E(r) = 4 E 

12 

(3.44) 

To make Equation 3.43 and 3.44 consistant at large separations, 

it follows that 

hence 

C = 4 (r^) 

E(r) = - C 

(3.45) 

6 -, 

12 
(3.46) 

To obtain the gas-solid interaction potential it is necessary 

to sum the interaction between a gas molecule in the pore and 

all atoms in the solid; for this purpose Equation 3.46 must be 

integrated with appropriate boundary conditions over all the 

solid. A cylindrical coordinate system (p, 0, Z) shall be 

used. The coordinate origin is the gas molecule and the Z 

axis is parallel to the axis of the cylindrical capillary. 

If the distance between interacting particles in a plane 

perpendicular to the Z axis is given by p, then the distance 

between a gas molecule and any point in the solid is 
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2 2 1/2 
(p + Z ) . The interaction potential of a gas molecule 

at a distance r* from the axis of the capillary is given by 

TT 00 . 00 

E (r') - -2N^C J j f 
o S -00 L(pW)3 

pdZdpdQ 

o < r ' < R (3.47) 

where S is the distance in p plane between the gas molecule 

and the wall of the capillary and is the number of atoms 

3 
per cm in the solid. Performing the first and second 

integrations gives 

.TT 

E(r') = -
^ / ( l  

o t 
3 - 32 r o^ is] de (3.48) 

Applying the law of cosines to the triangle formed by S, r', 

and R gives 

= r' cos © + [R^ - rsin^ (3.49) 

Rewriting Equations 3.48 and 3.49 in terms of reduced 

variables gives 

irN C ^ 
E(rVS ) ^ / 

; ^ Jr 

IT r 

4S - o 
o 

7 r 

(S/S^)" 32 So* (8/Sg/ 
de 

(3.50) 

and 

8/5 2 . 2  « i l / 2  o = (r'/S^) cos e + [(R/S^)^ - (r'/8g)^ sin^ G] 
(3.51) 
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If the potential function given by Equation 3.46 had 

been integrated over a semi-infinite solid instead of the 

capillary solid, then it can be easily shown that 

1/6 
15 

Sq (3.52) 

and 

1 »N C 

Substitution of the last two equations into Equation 3.50 

results in 

IT 

E(rVS ) = 9(3) E^ f [ ^ — gl dG (3.54) 
4 AS I (8/%)̂  64 (S/S^)®J 

It has been necessary to assume that the distance from the 

surface where E(r'/S^) = 0 is the same as that for a plane 

surface. The integration in Equation 3.54 was performed 

numerically by computer for various values of R/S^. Relative 

potential energy curves for some values of R/S^ are shown 

in Figure 4. As can be seen, the curved surface only affects 

the potential appreciably for small values of R/S^. 

The second gas-surface virial coefficient for a capillary 

solid surface is given by Equation 3.19 or 

R/8_ 

BÂ8 r 
A'S J [exp (-E(r'/8Q)/kT)- 1 ] (r VR)d(r•/S^) (3.55) 
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The integration of Equation 3.55 was pe. ff ? d numerically by 

computer to obtain B^g/A'S^ as a function of -E^g/kT for 

various values of R/S^. A comparison of the surface areas 

and interaction potentials evaluated for the plane and 

capillary surface models will be made in a later section. 

3. Two-dimensional gas second virial coefficients 

In principle ̂ the two-dimensional gas second virial 

coefficient BgCT) is experimentally measurable for a given 

adsorbate-adsorbent system if the surface area of the adsorbent 

is known. But, since the surface area "of the adsorbent is 

the parameter of interest^ it is necessary to calculate BgCT) 

theoretically so that the surface area can be calculated 

from Equation 3.26 or 3.37, 

Initially, Sams e_t (48) and Barker and Everett (47) 

used the Lennard-Jones (6-12) potential function in the form 

suggested by Hirschfelder, Curtiss and Bird (60) to facilitate 

use of their tabulated parameters and written as 

E"(r) = 4Ê  [ 4 |£ j ® _ £p] (3.56) 

where ( = 1 for the time being and E^, a are the bulk gas 

parameters. The assumption that Ç = 1 for molecular interactions 

in the presence of a solid surface presumes that gas-gas and 

gas-surface interactions are additive. Freeman (61) has 

experimentally shown that this is not a good approximation. 

Barker and Everett (47) assumed that the attractive potential 

1 2  
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was modified but the repulsive potential remained unchanged, 

i.e., ̂  ^ 1 in Equation 3.56 which can be rewritten in the 

form 

E"'(r) = 4E- [ 
6 I y.^i2 

] (3.57) 
i m  - M  

2  — 1 / 6  
where E^ = $ Ê  and c'*' = (C) a. Sinanoglu and Pitzer 

(57), using third-order perturbation theory, have shown that 

_ 2 
an additional r term should be included in the interaction 

] (3.58) 

potential function to give 

E'̂ r) . 4E* [ [£j® -

where v - CS/4E^a^R^. The effects of ( and 7) upon the bulk 

gas potential are shown in Figure 5. 

Substituting the potential functions given by Equations 

3.57 and 3.58 into Equation 3.27 for the two-dimensional 

second virial coefficient and performing the integrations 

gives 

rgBE B 

(3.59) 
Nira''"^ Ntto 

3.nd SP 

 ̂- 4/(fl + x|/« (f'i (3.60) 

with the functions f and ij/' defined as 

... fp'"'l/6 CO fn/2 
^(T") = ^2 61 (5/6) - r (3.61) 
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and 
1/6 00 CO l/4(2n+3m+3) 

- -T2- mSo nSo  ̂

(3.62) 

whei-e "f"' =- (4Ê /kT) and p = - Tj. 

The function \|/ and 4** have been evaluated for various 

SP 2 
values of T'*' and r? and some values of Bg/NTTor are given in 

Table 1. The values in Table 1 agree with those of Johnson 

and Klein (62) . 

Johnson and Klein (62) have analyzed the data of Sams 

et al. (48) using the potential function of Sinanoglu and 

Pitzer as well as the potential function of Barker and Everett. 

Krizan and Crowell (63) have analyzed the data of Freeman (61) 

using Ihe Sinanoglu and Pitzer potential function. Generally, 

the succossl'ul application of the Sinanoglu and Pitzer potential 

requires more accurate data and data obtained at temperatures 

near the two-dimensional Boyle point. 

If the data are sufficiently accurate, the complete 

Equation 3.32 should be used where the two-dimensional second 

virial coefficient is corrected for nonplanarity of the adsorbed 

phase. An analytical expression for a has been given by 

Barker and Everett (47) and its use involves an iteration 

procedure which has been described in detail by Wolf and 

Sams (64). 



www.manaraa.com

51 

The calculation and use of the two-dimensional second 

virial coefficients was performed by computer Program 5 

(Appendix C) . The calculations of and (T'') involve 

summations requiring the use of recursion formulas. Since 

the recursion formulas are omitted in most treatments, they 

shall be included here. 

Evaluation of 4'(T") by computer requires a recurrence 

relation involving the function 

F(n) = ̂  (3.63) 

n = 0 ,  1 ,  2 j  . . .  

Using the property ]'(n+l) = nj'(n), it is readily shown that 

- IcnZlxLz) (3-64) 

n = 2 ,  3 ,  4 ,  . . .  

with F(0) - - 6.77274 and F(l) = 2.67888. 

Evaluation of ' (T' ) by computer requires recurrence 

relations involving the function 

G(m,n) = V /3m+6n^l\ ' (3.65) 

n;(m+l)! \ / 

in = Oj Ij 2 y ... J n = Cj 1 ̂ 2 ̂ ... 

Using the property r(n+l) = nr(n), it is readily shown that 

G(m-4,n) (3.66) 

m = 4, 5, 6, ... J n=0, 1 
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and 

G (m. ") - ?2(mt?)(nHn-l) <3 67) 

111 = 0, 1, 2j ... j n=2j 3, 4j ... 

with G(0,0) = 11.4984, G(1,0) = 1.33944, G(2,0) = 0.25364, 

0(3,0) = 0.06271, G(0,1) = 1.52187, G(l,l) = 0.564395, 

G(2,l) = 0.15970 and G(3,1) = 0.04961. 

E. Comparison of Plane and Capillary 

Surface Models 

The potential energy for the interaction of a given gas 

molecule with a given solid having a plane surface has a 

minimum at a distance from the surface. The same 

gas molecule interacting with the same solid but within a 

cylindrical capillary of radius R will also give rise to a 

potential energy minimum E^g, but it will differ from E^g, 

and its position and magnitude will vary with the ratio R/S^. 

The ratio E^g/E^g was evaluated numerically and is presented 

as a function of R/S^ in Figure 7. The discontinuity appear­

ing in the curve at R/S^ ~ 1.4 reflects the value of R/S^ at 

which the position of the potential minimum coincides with 

the axis of the capillary. For values of R/S^ <1.4 the 

overlap of potential fields decreases the interaction energy 

ratio until it becomes zero for R/S^ = 1 and repulsive in 

nature for R/8^ < 1 (i.e. the gas molecule cannot enter the 

capillary). 
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Whether adsorption occurs on a plane surface or in 

capillaries, a plot of In versus l/T will be nearly 

linear for T sufficiently small, i.e., 

in = I + I (3.68) 

Thoorotically (see Equation 3.42), a plot of In (B^g/AS^) 

agai ns t-E^"g/kT for the interaction of a gas with a plane 

surface will be nearly linear for -E^g/kT >5, i.e., it will 

very nearly coincide with its tangent whose equation is 

®AS 
In ̂  = Ql + Qg (3.69) 

with very nearly unity for -E^g/kT >5. A similar plot 

for the interaction of a gas with a capillary system will 

also be nearly linear, as can be shown by numerical integration 

of Equation 3.56. For the capillary system, therefore. 

Big -E%g 
1" = Q; + 0% (3.70) 

o 

The coefficient of l/T could be treated so that the ratio 

E^'g/E^'s discussed above is included explicitly, but it is not 

pertinent to the present discussion to do so. 

The surface areas are calculated from the intercepts of 

In V° versus l/T plots; from Equations 3.69 and 3.70 it 
ex * 

follows that (since comparison will be based on the identification 

^ox ̂  ®AS ^ ®AS^ 
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^ - 1" Vp - - 92 <3 71) 

2 
where A is the plane surface area equivalent to 1 cm of 

app 

capillary surface area. The dependence of on R/S^ is 

shown in Figure 6. The identification = B^g = B^g 

implies that the coefficients of 1/T in Equations 3.68, 3.69 

and 3.70 are also equivalent. 

F. Diffusion in Capillaries 

The different methods used to study high temperature 

adsorption in this work have different time parameters. In 

elution gas-solid chromatography, for example, this is the 

time required for an elution peak to pass a point in the column 

(about 1 sec) . In the gravimetric adsorption syslTem it is 

the time allowed for equilibration. In the interpretation 

of experiments with porous adsorbents, it is important to 

realize that there is also a characteristic time for penetration 

of the capillary and the capillary surface Will tir will not 

reach substantial adsorption equilibrium depending on whether 

this latter time is short or long compared to the character­

istic experimental time. 

Clausing (65), from an interest in measuring the time 

of adsorption (T), calculated the average time required for 

a molecule to pass through a capillary of length £. and 

diameter d as 
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t = ̂  ̂  (3.72) 
2du 2d 

where u is the mean velocity of the molecules. The first 

term arises from Knudsen diffusion while the second reflects 

the existance of T. The time of adsorption T is given by 

T = exp (3.73) 

where T^ is the time of vibration of the adsorbed molecule 

and iH the differential heat of adsorption. 

II may be necessary to correct Equation 3.72 for surface 

migration. Clausing (66) approached the surface migration as 

being a two-dimensional diffusion problem and obtained 

•tj = iit where 

3tL Û 
a = 1 + (3.74) 

2d^ 

and where is the mean free path on the surface. 

Kruyer (67) has considered a hopping molecule as the 

mechanism lor surface migration which gives t^ = pt where 

? T a^ 
= 1 + (3.75) 

and where (a) is the hopping distance and t' is the lingering 

time after each hop. 

For small values of £ and d, a simplified equation can 

be written for the two-dimensional diffusion model for surface 

migration as 
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,2 
t. = — (3.76) 

which indicates that the diffusion is independent of the 

capillary diameter. If (a) is taken as approximately equal 

to interatomic distances of the surface atoms and if d 

approaches (a), then a simplified equation is obtained for 

the case of hopping molecules as 

tg = y (3.77) 
Sa": 

Everett (68) has shown that for nonlocalized van der Waals 

monolayer the isosteric heat of adsorption is given by 

qst = - E%g + 1/2 RT (3.78) 

Also, it can be shown that 

^diff " %t ~ (3.79) 

hence, 

Idiff - - 1/2 RT (3.80) 

For the purposes of calculating some numerical values, 

Equation 3.72 for t in absence of surface migration, assuming 

the term duo to Knudsen diffusion can be ignored, and Equation 

3.77 lor t^ can be rewritten in more suitable forms using 

Equations 3.73 and 3.80 as 
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log t = log 303 ̂  + 0.434 —(3.81) 

and 

-E%g 
log = log 54.5 + 0.217 (3.82) 

O 

where f and £' are in cm and d is in A. It was assumed that 

~ - 1 ® 

~ 10 sec, a = 3 A and that the activation energy 

associated with T ' is equal to In Figure 8 values 

of log t and log t^ versus - E^g/RT are plotted for d = 5 A 

and several values of i and i'. 

A more complete discussion of diffusion in capillaries 

is given by de Boer (69). 

G. The Evaluation of and/or 

It has been pointed out that the surface area ia not 

obtained directly from the Henry's Law theory, but a capacity 

factor is obtained which is the product AS^ or AZ^. Therefore, 

S must be evaluated external to the theory if the surface 
o 

area is to be determined. Several methods have been used at 

various times to evaluate S^. 

Once the value E'^g is known, can be evaluated from 

Equation 3.53 
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il' Llic c'oiisl.anL C which arises from London's (70) formulation 

of dispersion forces is known. Several formulas have been 

proposed for the calculation of C, of which the best attempt 

is due to Kirkwood-Muller (71,72), and are summarized by 

Margenau (73). Halsey and co-workers have used this method 

to determine and hence the surface area. As to be expected, 

the surface area calculated depends upon the particular formula 

used to calculate C. Since a given adsorbent should have 

the same surface area available to various adsorbates, it 

has been proposed (56) that if the capacity factor AS^ is 

plotted versus the second virial radii of the adsorbates , a 

straight line should result whose slope is equal to the surface 

area. In practice, areas thus calculated were lower than 

those based on the Kirkwood-Muller formula, but comparable 

areas were obtained if crystal radii were used in place of 

the second virial radii. 

The easiest and simplest method for evaluation of 

was proposed by Hansen (55) who used the "combining laws" 

suggested by Hirschfelder, Curtiss and Bird (60) that 

o^g 1/2 (o^^ + Ogg), being the distance at which the 

intermolecular potential between molecules A and B is %ero. 

If a 3-9 potential function is used to represent gas-solid 

interactions, it can be shown that S^ = 0.7147 Also, 

X = 0.8584 and X = 1,201 S . This method was used in 
o AB o o 

the calculation of all Henry's Law surface areas reported. 
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Values and using this method are given in Table 2 for 

several adsorbates on carbon and silica gel adsorbents. 

for carbon was chosen as equal to the interplanar spacing 

O 
of graphite or 3.4 A and for silica gel was chosen as equal 

O 
to the crystal diameter of the oxide ion or 2.8 A. 
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IV. APPLICATION OF GAS-SOLID CHROMATOGRAPHY 

TO STUDY OF PHYSICAL ADSORPTION 

The application of gas-solid chromatography to the study 

of physical adsorption makes use of principles laid down by 

Wilson (74), Weiss (75), De Vault (76) and Glueckauf (77) for 

liquid-solid chromatography. Although there are several 

different types of chromatographic processes, only two are of 

interest in gas-solid chromatography. They are; (1) Elution 

gas-solid chromatography (alternately known as pulse flow or 

impulse chromatography) whereby a small sample of adsorbate is 

injected into the column containing the adsorbent and is 

carried through the column by an inert carrier gas. (2) 

Frontal gas-solid chromatography (alternately known as 

continuous or step flow chromatography) whereby at some given 

time the adsorbate is injected continuously into the carrier 

gas stream. The method for continuously injecting the 

adsorbate depends upon its physical state at room temperature. 

Henceforth, elution gas-solid chromatography shall be referred 

to as EGC and frontal gas-solid chromatography as FGC. 

The measurement of surface areas by the BET method using 

FGC to obtain the adsorption data has been developed by 

Nelson and Eggertsen (78) and extended by Haley (79) to include 

the size distribution of pores. EGC has also been used by 
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several authors (80-85) to determine heats of adsorption. 

The heat oi adsorption measured is effectively the isosteric 

heat oi adsorption at %ero surface coverage. FGC (86-90) and 

EGG (91-93, 89,90) have been used to measure adsorption 

isothoi-ms of adsorbates that are usually liquid at room 

temperature (e.g. hexane and benzene) over the temperature 

range 0-600*C. The gas chromatographic methods thus far 

referred to require that either the chromatographic detector 

response be linear with partial pressure of adsorbate or that 

a suitable calibration be made. Schay and co-workers (94,95) 

have described a FGC method suitable for measurement of adsorp­

tion isotherms of permanent gases and light hydrocarbons. 

Bobbins (06) has used a combination of FGC and EGC methods 

to measure adsorption isotherms at temperatures between 

800-1200°C. 

The use of gas adsorption chromatography in physical 

adsorption studies has both advantages and disadvantages. 

The principal advantages are versatility and applicability 

to high temperature adsorption studies. Its principal 

disadvantage is a lack of necessary accuracy under certain 

conditions. 

Now, it is desirable to develop the theoretical relation­

ships between the chromatographic parameters, the adsorption 

isotherm and the gas-surface virial coefficients as defined 

in Lho preceding sections. It shall be convenient to consider 
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the chromatographic system as consisting of one gram of 

adsorbent packed in column of length L at a temperature 

°K. At time zero, a gas mixture containing a partial 

pressure P of adsorbate is fed into the column at a flow 

rate F. It shall be assumed that the input temperature 

equals the output temperature equals the temperature (*K) 

of the Ilowmeter at which F is measured. 

A dillorential material balance around the column can 

then be written as 

Input - Output = Amount in dead space + Amount 

adsorbed at (4.1) 

or 

V 
RT~ ̂  Pj dt = dP^ + dn^ (4.2) 

o o c 

whore is the dead space volume. Following Bobbins (96), 

integration of Equation 4.2 can be performed using initial 

conditions as: t = 0, P. ^ 0, P = 0, n =0 and steady state 
' 1 ' a ' a 

conditions as: t = t , P. = P, P„ = P, n„ = n'*'. Then 
m '  1  ' a  ' a  a  

'm V r" A 

dt - R#- j dPa +jf dn̂  (4.3) 

°  O  °  O  * ^ 0  o  

Performing the integrations, which includes integrating the 

second integral on the left by parts, gives 
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F r P VP 

= RT- J tdP - RT- (4.4) 
o c 

o 

If the adsorbate is not "adsorbed", then integrating 

Equation 4.3 gives 

VP F 

RT^ " RT~ I t^dP (4.5) 
c of 

Substitution of Equation 4.5 into Equation 4.4 results in 

"a ^ rI" j (t-t.)dP (4.6) 

In order to determine the amount adsorbed, it is necessary to 

evalute the integral in Equation 4.6. Under ideal conditions, 

the integration could be performed graphically, but in most 

practical cases this is not feasible. 

It shall be convenient to consider an injected sample 

in EGC as an impulse input function. For linear gas chroma­

tography (i.e. the adsorption isotherm follows Henry's Law) 

the output or response function to an impulse input function, 

can be closely approximated by a Gaussian distribution function 

as shown in Figure 9(b). Reilley ejt (97) have given a 

very good discussion of gas chromatographic responses for 

various input functions. Although the response function could 
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be obtained by replacing the summation of the individual 

responses by an integration, a more powerful tool is to 

use a Laplace transform method to obtain the response function. 

For a step input function the response function obtained is 

sliown in Figure 9(a). Inasmuch as the response functions 

arc symmolrical about t^ (defined as the retention time), 

Equation 4.6 can be rewritten simply as 

The left hand side of Equation 4.8 is simply the excess volume 

(V^^) as defined in previous sections. The product Ft^ is 

defined as the retention volume Vj^. 

11 the maximum partial pressure of the adsorbate in the 

carrier gas stream lies outside the Henry's Law region, then 

the interpretation of the retention times becomes more 

complex. Injected samples of adsorbate exhibiting Type I, 

II, or IV isotherms (Figure 1) will give asymmetric response 

peaks with sharp fronts and diffuse tails whereas adsorbates 

exhibiting Type III or V isotherms (Figure 1) will give 

response peaks with diffuse fronts and sharp backs. Since 

Type III and V isotherms are quite rare, the remaining 

(4.7) 

or 

( 4 . 8 )  
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discussion will be confined to systems exhibiting the other 

three types of isotherms. 

The assignment of t^ presents no problem since the 

adsorbate used to determine it is assumed not to be adsorbed 

and hence must necessarily fall in the Henry's Law region. 

As the maximum adsorbate concentration in a step input func­

tion is increased, the width of the adsorption front will 

decrease resulting in an increase in the slope of the 

chromatographic front shown in Figure 9(a). The placement 

oi t^ should be chosen such that the shaded areas (A and A' 

Figure 9(a) ) above and below the output peak are equal. On 

the idealized chromatogram t^ represents the point of inflection 

or half-step height of the chromatogram. Although in practice 

t^ should be chosen so that the areas A and A' are equal, the 

error introduced by using the half-step height position as 

equal to tj^ is quite small for elongated S-shaped 

chromatograms. 

The use of EGC to measure adsorption isotherms except 

in Henry's Law region is a questionable application. For a 

FGC system, the adsorbate partial pressure can be determined 

either by measuring the flow rate of the input gas stream 

with and without the adsorbate or by passing the carrier gas 

through the liquid adsorbate at a given temperature so that 

it becomes saturated with vapor before entering the column. 

For a EGC system a scheme must be devised by which the 
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maximum partial pressure can be calculated. The assignment 

of t„ also creates considerable problems unless the maximum 
K 

partial pressure falls within Henry's Law region. The use 

of Equation 4.6 to determine the amount adsorbed requires 

that P be the same for both adsorbed and nonadsorbed 
m 

adsorbates. The relationship between response of a chromato­

graphic detector and concentration is such that this is 

difficult to achieve experimentally. Robbins (96) has proposed 

that for adsorbate-adsorbent sytems exhibiting Type I, II, 

or IV isotherms the half-peak height for the sharp front of 

an EGC peak be used for t^. This results from an analogy 

with the corresponding FGC system which in the view of this 

author is totally unjustified. There is, however, some 

Justification for using the peak maximum. While such effects 

as longitudinal diffusion and channeling will tend to broaden 

the chromatographic peak, the position of the peak maximum 

will remain relatively unchanged. 

The identification of the left hand side of Equation 

4.8 as equal to is sufficient to relate gas chromatographic 

rotentj Or volumes to the evaluation of gas-surface virial 

coefficients, two-dimensional gas virial coefficients and 

Hem y 's Law constants. A more direct relationship has been 

given by Hanian and Freeman (98) who, using the imperfect 

gas theory of Halsey and co-workers, obtain 
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Vp (adsorbate) - Vp (carrier)= V = V° 
XV xv G X 6 X 

+ "AP CAAs/KT (4.9) 

where X^P is the partial pressure of the adsorbate and 

(carrier) is simply the retention volume for a "nonadsorbed" 

gas . 

In Equation 4.8,the flow rate has in effect been 

corrected to column temperature. Under normal conditions 

there will be a small pressure drop across the column 

necessitating correction of the flow rate to column conditions, 

hence 

^ex = (Tc/To) <Vo> (4.10) 

where P^ is the outlet pressure and P^ the column pressure. 

If it is assumed that flow through the column can be treated 

as laminar I'low through a long capillary, then the pressure 

correction factor proposed by James and Martin (99) is obtained 

which is 

c 
[ 

pï - po j 
(4.11) 

where P^ is the column inlet pressure. It can be shown that 

Equation 4.11 reduces to 

m 
(4.12) 
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where P is the arithmetic mean pressure and AP = P. - P . 
ra 1 o 

The second term in the brackets of Equation 4.12 can usually 

be ignored without introducing an appreciable error as it 

represents a correction for the difference between the 

arithmetic and the geometric mean pressure. Therefore, the 

excess volume correct to column conditions is given by 

^ex F - t^) ^ p 
o m 

L 

• 

(4.13) 

All adsorption measurements in the present study taken 

with the EGC system were presumed to lie in Henry's Law region. 

The values of t^ and t' for the adsorbed and nonadsorbed gases 
K K 

respectively were taken as the positions of the chromatographic 

peak maxima. Hence, the calculated from Equation 4.13 is 

equivalent to The FGC system was used to determine the 

dependence of or h^ on P. The value of t^ was again chosen 

as the position of the chromatographic peak maximum, while 

tj^ was chosen as the position of half-step height of the 

chromatographic peak. Hence, each value of calculated 

from Equation 4.13 gives a point on the adsorption isotherm. 

Additional points on the adsorption isotherm were obtained 

by varying the adsorbate partial pressure in the carrier 

gas stream. The partial pressure of the adsorbate was 

calculated from 

p = [adsorbate p (4.14) 

Ftotal 
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V. EXPERIMENTAL 

A. Elution Gas-Solid Chromatography (EGC) 

The EGC system used in this work was essentially the same 

system used by Murphy (59) and described by Hansen e_t al. 

(100). For the sake of consistency the system shall be 

described herein. 

The basic system was a Research Specialties Company 

600 series gas chromatograph consisting of a M604 main control 

unit, a M605-1 katharometer (thermal conductivity detector) 

power supply, a M606 flow controller and a M608-1 recorder 

unit. The recorder was a Leeds and Northrup Speedomax H with 

a 9 inch chart. A chart speed of 1 inch/minute was used in 

all experiments. 

A constant temperature bath was used to provide accurate 

temperature control of the detector-column assembly over the 

temperature range 25-500°C. The bath consists of a stainless 

steel tank 9 inches in diameter and 10 inches high placed in a 

sheet metal box and insulated with fire brick and Zonolite, 

The tank rested on copper plate which could be heated by a 

1500 watt ring heater and was separated from the main 

insulation by a sheet metal shield and a layer of sand to 

facilitate the changing of bath material, etc. The top of 

the tank was insulated with two pieces of 1/2 inch transite. 
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Fine temperature control was obtained with a 150 watt heater 

operated by the M607-3 proportional temperature controller 

using a platinum resistance sensing element. Mineral oil was 

used as the bath material over the temperature range 25-150°C 

and a sodium nitrite - potassium nitrate eutectic mixture over 

the temperature range 150-500°C. Stirring of the bath material 

was provided by a heavy duty stirring motor with a quartz blade. 

The temperature of the bath material was measured by a 

platinum resistance thermometer and a Mueller bridge calibrated 

by the National Bureau of Standards. A Leeds and Northrup 

D.C. Guarded Null Detector (No. 9834) was used to determine 

the null point. The flow rate was determined by the time 

required for a film of sodium laurylsulfate to transverse a 

calibrated volume in a flow meter constructed from a 22 mm OD 

pyrex tube. The pressure drop across the column was measured 

by a simple U-tube mercury manometer. A gas sampling valve 

3 
(Perkin-Elmer Company No. 154-0067) with 0.1 cm sample volume 

was used to inject the gas samples into the carrier gas 

stream. This sampling valve is particularly useful in that 

additional sample loops can be attached quite readily. 

The thormoconductivity (katharometer) detector used in 

the present work was a slight modification of the one described 

by Hansen e_t aj^. (100) and is shown in Figure 10. The detector 

was a full-flow split-stream model with the two halves of the 

detector identical. The detector was constructed from a 2 inch 
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cube of stainless steel. The internal passages of the detector 

were 1/16 inch in diameter and were constructed by drilling 

through from one side and then filling in the hole up to the 

first filament well. The external gas connection fittings 

(four altogether with one shown in Figure 10) were machined 

from stainless steel with half-twenty thread on the large end 

and the small end suitably machined for connection with 1/16 

inch Swagelock tube fittings. The filaments used were Gow 

Mac Instrument Co. type W9225 (tungsten). The detector was 

assembled by placing a double knife-edge washer (101) in each 

well, inserting a filament together with a flared 1/4 inch 

stainless steel tube and finally sealing the assembly with a 

1, 2 inch hexagonal tube nut with half-twenty thread. The 

double knife-edge washers were also used to obtain gas tight 

seals with the input-output gas connection fittings. 

A block diagram of the complete chromatographic apparatus 

is shown in Figure 11. Helium was used as the carrier gas 

in all chromatographic studies described herein. After the 

gas sample is injected into the carrier gas stream, it is 

split in two with each part passing over the filaments normally 

referred to as the reference filaments, thus producing a sharp 

negative signal. The two sample streams are then rejoined 

and passed through the column. After exit the gas stream is 

again split and passed over the sensing filaments producing 

the normal chromatographic peak. Typical chromatograms for 
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an adsorbed and for a non-adsorbed gas are shown in Figure 12 

(a). The detector design insures close correspondence 

between ^as concentration and detector response at the 

temperature of interest while providing a simple means of 

insulating the electrical leads from the bath material. 

The adsorbents used in these studies were Columbia-L 

activated charcoal, grade LC 20/48, obtained from National 

Carbon Company and used by Murphy (59), SK activated charcoal 

obtained from Barnebey-Cheney, and a Fisher Scientific 

Company Silica Gel that was leached with nitric acid and 

washed by, but not used by, Murphy (59). All adsorbents were 

sieved to exclude particles larger than 20 mesh or smaller 

_3 
than 40 mesh. All samples were outgassed at 10 mm pressure 

and 400°C for the charcoals and 275°C for the silica gel. 

The adsorbents were packed into one-quarter inch OD stainless 

steel tubing of suitable length to give the desired sample 

size and then the column was coiled into a spiral 5 inch 

in diameter. 

The gases used and their minimum purities were U.S. 

Bureau of Mines helium (99.999%), Air Reduction Co. research 

grade neon (99.999%), Matheson Co. C. P. Carbon monoxide 

(99.5%), C. P. methane (99.5%), prepurified nitrogen (99.996%), 

prepurified argon (99.998%), C. P. ethane(99.0%), C. P. 

ethylene (99.5%), instrument grade propane (99.5%), C. P. 

proplyene (99.0%) and bone dry grade carbon dioxide (99.8%). 

All gases were used as received. 
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Neon was chosen for use as the non-adsorbed gas because 

the more logical choice,hydrogen,gives complex peaks with 

helium carrier when its concentration is greater than 13 

mole per cent (102). 

B. Frontal Gas Chromatography (FGC) 

The FGC system used in this work was for the most part 

constructed at this laboratory to provide the desired data. 

The components of the Research Specialties Company chromatograph 

used with the FGC system were the M605-1 katharometer power 

supply, the M607-3 proportional temperature controller and 

the M608-1 recorder unit. 

A constant temperature bath similar to the one described 

for the EGC system was constructed for the FGC system. The 

bath container itself was a 2 1/2 gal battery jar. Mineral 

oil was used as the bath material. Temperature control was 

maintained either through the use of the M607-3 proportional 

temperature controller or by use of a Precision Scientific 

Co. electronic relay coupled with a mercury thermoregulator. 

Additional temperatures were obtained using an ice bath 

(0*C), melting brogabenzene (-31°C) and melting diethyl 

malonate (-50°C). The last two baths were prepared by freezing 

some of the liquid with liquid nitrogen. 

The thermoconductivity detector used with the FGC 

system was a two filament model which was effectively the 
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sonsiUK side oi the detector uaed with the EGC system except 

that the internal passages were 1/8 inch in diameter and 

gas connections were made by silver soldering Swagelock 

reducers (No. 200-R-3-316) in the inlet and outlet ports 

of the detector block. Two 50 ohm Helipots were used as the 

reference filaments. 

Many FGC studies have been carried out using adsorbates 

that are normally liquids at room temperature, permitting adsorbate 

concentrations to be easily established by bubbling the carrier 

gas through the liquid adsorbates at an appropriate tempera­

ture. The adsorbates of interest in this study were gases 

at the convenient experimental temperatures (i.e. 0°C and 

above). Hence, the gas mixtures were prepared by adding and 

mixing a carrier gas stream with an adsorbate gas stream. 

Since the accuracy of the data will reflect changes in the 

flow rates of the various gas streams, it is necessary to 

maintain the flow rates as nearly constant as possible. 

Constant differential type flow controllers Model 63 BU-L 

produced by Moore Products Co. (Springhouse, Pennsylvania) 

proved vci'y satisfactory in maintaining constant flow rates. 

A lino needle valve must be used with the flow controllers, 

so Matheson Co. Model 621PB1 low flow flowmeters with 610 

metering tubes were used to provide a suitable needle valve 

and at the same time indicated approximate flow rates. 
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The How rates were measured by soap bubble flow meters 

using a solution of sodium laurylsulfate and constructed from 

50 ml pyrex burets that were calibrated every 10 ml. The flow 

meters were housed in an air thermostat constructed from 3/4 

inch plywood with a plexiglass sliding front door. The thermo­

stat contained a small fan and a suitable heating element and 

was maintained at slightly above room temperature using a 

Precision Scientific Co. electronic relay coupled with a 

mercury thermoregulator. 

The columns were usually U-tubes made from 8 mm OD 

pyrex tubing of suitable length so as to contain the desired 

amount of adsorbent. The columns were weighed, filled, 

outgassed at a suitable temperature with a stream of helium 

passing through the column and weighed again to determine the 

sample weight before attaching the column to the FGC system. 

One-eighth inch OD stainless steel tubing was used 

throughout with the exception of sections leading to column 

input and from the detector output where 1/8 inch ID poly­

ethylene tubing was used to obtain a certain degree of flexi­

bility in that portion of the system. Swagelock tube fittings 

were used for all metal gas connections with 1/8 inch OD 

kovar-pyrcx graded seals providing connections to the glass 

components of the system. 

A schematic diagram of the FGC system is shown in Figure 

13. An experiment is started by the interchange of a pure 
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carrier gas stream with the carrier gas stream containing a 

known partial pressure adsorbate by rotating the four-way 

stopcock S3. Attached to the plug of stopcock S3 was a 

plexiglass cam . which operated a normally closed micro switch 

wired in series with the chart drive switch of the recorder. 

Hence, prior to the interchange of the gas streams the chart 

drive switch was closed and the micro switch opened and time 

zero can be indicated on the recorder chart. As stopcock 

S3 is rotated to interchange the gas streams,the cam is also 

rotated and the micro switch is closed to start the recorder 

chart. Since the filled column offers a flow resistance and 

hence, a pressure drop across it, a needle valve (V) was 

inserted to provide an equivalent pressure drop in the gas 

mixture stream as measured by the mercury U-tube manometers 

(M) . 

The partial pressure of adsorbate could be determined 

by measuring the flow rate of the adsorbate with flowmeter F1 

and ol the helium carrier with flow meter F2 before the two 

streams are added by switching stopcock SI. In practice, it 

is more convenient to determine the flow rate of the adsorbate 

by measuring the flow rate of helium carrier with F2, adding 

the adsorbate stream, and measuring the flow rate of the 

mixed stream. It is assumed that the partial pressure is 

given by Equation 4.14. 



www.manaraa.com

77 

The dead space volume was determined using samples of 

neon injected into the carrier gas stream by the Perkin-Elmer 

gas sampling valve suitably coupled with the micro switch. 

A typical frontal chromatogram showing a neon peak is shown 

in Figure 12(b). The adsorbents and gases used in adsorption 

studies using FGC were the same as those described in the 

previous section for EGC. 

C. Vacuum Microbalance (MB) 

A gravimetric adsorption system was constructed to extend 

the range of adsorption measurements to regions in which 

chromatographic measurements are impractical. The main 

components of the gravimetric systems, henceforth referred 

to as MB, were a No. 2000 Cahn RG Electrobalance enclosed in 

a vacuum bottle and a Texas Instruments Inc. Model 145 Precision 

pressure gage equipped with high resolution read-out. The 

pressure gage was also equipped with a 10,000 ohm restransmit­

ting potentiometer which was not used in these studies. A 

Type 6 Bourdon tube capsule with a No. 1 Bourdon tube serial 

No. 1898 was used with the pressure gage. The particular 

capsule-tube combination used permitted the measurement of 

absolute pressures oi 0-32 inches of Hg with an accuracy 

of better than 0.01 mm Hg. The remaining components of the 

MB system were a vacuum pumping system and a gas handling 
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system. A schematic diagram of the complete system is shown 

in Figure 14 and a photograph of the system is shown in 

Figure 15. 

The vacuum pumping system consisted of a 3-stage mercury 

diffusion pump suitably trapped and backed by a mechanical 

fore pump. The pumping system could be isolated from the MB 

itself by the large bore valve V2. A certain amount of flexi­

bility was necessary between the valve and the pump-out port 

on the vacuum bottle and was provided by a pair of one inch 

ID stainless steel bellows welded to kovar-pyrex graded 

seals. 

Since rather large quantities of gas are required for the 

MB system, a large gas storage is necessary. The gases used 

with the MB system were the same as those described for the 

EGC system. With the particular arrangement of the gas 

handling system, the gas was first passed through a fine 

capillary (0.009 inch ID) and then through a dry ice-acetone 

cold trap before reaching the gas storage bulb. Another 

section of similar capillary tubing provided control over 

the rate at which gas entered at the adsorption part of the 

MB system. 

The electrobalance is based on the null-balance principle, 

using a torque motor to supply a restoring force to counteract 

changes in weight suspended from the balance beam. Therefore, 

changes in weight are given by changes in the electrical 
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signal to the motor. A helipot potentiometer is used to 

subtract a portion of the electrical signal applied to the 

motor before output to a recorder. A Mosely Model 7001A X-Y 

recorder, modified for potentiometric input, was used with the 

electrobalance in all adsorption measurements. Although the 

helipot potentiometer was the most accurate available commercial­

ly, in light of the present work, its replacement by an accurate 

voltage divider would permit better use of the accuracy 

available from the electrobalance and from recorders such as 

the Mosely Model 7001A. 

Static electricity proved to be a serious problem, so 

the hangdown tubes containing the sample and the tare weight 

pans were covered with a conductive coating of stannous oxide. 

Since the adsorbent sample was not in contact with the 

hangdown tube surrounding it, the adsorbent temperature could 

not safely be assumed equal to that of the tube, but was 

measured by means of a thermocouple located immediately 

above the sample. 

A thermocouple support assembly (similar to Cahn 

Instrument Co. Cat. No. 2020) was machined to fit into the 

vacuum bottle standard taper joint for the sample hangdown 

tube. The assembly supported 2 hole 1/8 inch OD ceramic 

tubing used to support and insulate the thermocouple wires 

above the sample. To avoid creation of additional junction 

potentials, the thermocouple wires were brought out of the 



www.manaraa.com

80 

vacuum bottle through a ceramic to metal vacuum feed through. 

This was soldered to a 1/4 inch OD kovar-pyrex graded seal 

which was glass blown to the center hangdown tube serving 

as the vacuum bottle pump-out port. 

Copper-constantan was used as the thermocouple material. 

Twenty-four ga. copper and constantan were soldered in the 

feed through and connected to the measuring thermocouple 

made from 30 ga. constantan and 32 ga. Nylclad insulated 

copper. A reference thermocouple made from the same copper 

and constantan was kept at 0°C. 

A calibration chart covering the temperature range 

10-27 2°K for the particular constantan used was obtained 

from Dr. B. C. Gerstein at this laboratory. The calibration 

points in the range 76-86°K were plotted and an excellent 

straight line could be drawn through the points. The emf of 

the copper-constantan thermocouple was measured when immersed 

in liquid nitrogen at a temperature determined by a calibrated 

platinum resistance thermometer. The thermocouple calibration 

was then shifted so as to pass through the experimental point. 

In this way the formula 

T(°K) = 87.25 - 64.0 (MV - 5.040) (5.1) 

was established, where MV is the emf of the thermocouple in 

mv. 
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In the range 0-100°C, the thermocouple was calibrated 

against the platinum resistance thermometer. The resulting 

temperature versus emf curve was fit via computer to a tenth 

degree polynomial in emf. The coefficients are given in 

Table 3. 

A calibration chart is supplied with the Bourdon tube 

and capsule with points spaced approximately 40 mm apart. 

The calibration points were divided into three sections and 

fit via computer to fourth, seventh and fifth degree polynomials 

in gage readings respectively. The coefficients are given 

in Table 3. 

After the electrobalance was set up according to the 

instruction manual, an appropriate amount of adsorbent was 

placed on the sample pan, the standard taper joints greased 

and the system evacuated with the fore pump. The mercury 

diffusion pump was then turned on. The adsorbent was out-

gassed with a tube furnace approximately 10 inches long at 

400°C for the chaicoals or 275°C for the silica gel for a 

period of 2 or 3 days. The background pressure with the 

adsorbent hot was 10~® mm Hg oi less. After the initial 

outgassing, the hangdown tube was wrapped with a neoprene 

covered heating tape, permitting further outgassing at 225°C 

between adsorption measurements at different temperatures 

il' the measurements were to be made at O^C or above. After 
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an adsorption isotherm at a given temperature was measured, 

the system was initially evacuated through the gas handling 

side before the valve to the high vacuum system was opened 

to avoid excessive filling of cold traps. With this procedure 

it was found that the system could be repeatedly evacuated 

without greatly impairing the pumping speed or the magnitude 

of the background pressure. 

The desired temperatures were obtained with a liquid 

nitrogen bath, an ice bath and a circulating constant tempera­

ture water bath. The water bath consisted of two parts. 

A pyrex battery jar 10 1/8 inch OD and 10 inches deep with 

a 2 1/2 gal capacity was placed in a 5 gal pail and insulated 

with Zonolite to act as a reservoir. A lid for the pail was 

made from 2 inch styrofoam and cut to facilitate its removal. 

A suitable portion was cut out from one part of the lid to 

accommodate a Haake Constant Temperature Circulator - Model 

ED unitherm (distributed by Poly Science Corp.). The second 

part of the water bath consisted of a 100 mm Oi) closed pyrex 

tube 11 inches deep with suitable bottom inlet and top outlet 

tubes conducive to circular motion placed in a sheet metal 

box 9 inches square and 14 inches deep and insulated with 

Zonolite to act as a water jacket around the hangdown tube. 

The tube was held in place at the top with styrofoam and an 

additional styrofoam cap was used once the water jacket was 
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in place. Thickwall vacuum tubing was used to connect the 

pump of the Circulator to the inlet of the water jacket and 

for the gravity return from the water jacket to the reservoir. 

With this arrangement, temperatures could be controlled to 

within ± 0.05°C for periods of 2-4 hours. 
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VI. RESULTS 

A. Processing of Experimental Data 

1. Introduction 

Most of the experimental data obtained during the studies 

described in this dissertation was processed by the use of one 

or more of the computer programs given in Appendix C. These 

programs are written in Fortran IV and have been used with 

IBM Model 360/50 and 360/65 computers. If the programs listed 

in Appendix C are used, then the symbol (at -@) should be 

replaced by an apostrophe (*) throughout the programs when 

the Fortran source decks are prepared. The device used to 

list the source program decks interpreted the (') as an (@). 

2. Gas chromatographic data 

Most of the gas chromatographic data was processed by 

a computer program representing a combination of Program 1 

(used Lo process raw data to obtain V°^ as a function of 

Lompcra Luic through the use of Equation 4.13) and Program 4 

(used to obtain the interaction potential -E^'g/R and the 

capacity factor Az^ from the V°^ versus temperature data 

through Equation 3.42). Experimentally, the raw data are 

obtained and processed in the order temperature/gases but 

must be in the order gas/temperature to evaluate -E^g/R and 

AZ^. The previous computer program contained a machine 
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language routine to rearrange the data, but it was 

incompatible with the new computers so the rearrangement 

was performed by hand. Although, theoretically, it would be 

possible to write an almost complete program to eliminate 

bad points, etc., from a practical point of view in cases 

where the number of data points is relatively small the data 

should be plotted before deciding which points to use or not 

to use. 

3. Microbalance data 

a. General All microbalance (MB) data were processed 

by Program 2 or Program 3. Both programs make use of the 

polynomials given in Table 3 to determine the pressure above 

the adsorbent sample from Pressure Gage readings. There 

are two methods by which the MB can be set up for operation. 

The procedural details can be obtained by consulting the 

instruction manual and the set up methods are referred to 

as basic or alternate. Generalized equations for total 

sample weight and weight of gas adsorbed at a given pressure 

are given respectively as 

S W = S - E +  ( D - B ) M + P x R  

Basic method E = 0, B = 0.0 

Alternate method E ̂  0, B = 0.5 

and 

WA = (Dg - B)M2 - - B)M^ + Pg X Rg -  P^ x  
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Basic method B = 0.0, = Mg 

Alternate method B = 0.5 (6.2) 

with D = Mass dial reading, in %/100 of f.s. 

AM = M.D.R., in mg 

P = Recorder reading in %/100 of f.s. 

R = Recorder range setting, in mg 

S = Substitution weight 

E = Zero offset 

where the notation is the same as used in Programs 2 and 3. 

b. Low temperature nitrogen adsorption data 

Temperatures near 80°K were calculated by the use of Equation 

5.1. Application of the BET equations requires the saturation 

vapor pressure of nitrogen which between the temperatures 64° 

and 84°K is given (103) by the equation 

logio PQ (mm) = - 33^/8 _ 0.0056286 T + 7.71057 (6.3) 

° 2 
A value of 15.8 A was used as the area covered by a nitrogen 

molecule. 

Program 3 will do a least squares fit using either the 

'oo form' of the BET Equation (2.3) or the 'n-layer' BET 

Equation (2.4) following the method of Joyner e_t aJ. (18) 

with n=l and n variable. A simple minimum search routine 

will determine the best value of n. When n=l, the Langmuir 

Equation (2.16) is obtained. 
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c. High temperature adsorption data The adsorption 

data for argon, nitrogen, carbon monoixde, methane, ethylene, 

ethane and carbon dioxide on Silica Gel, SK charcoal and 

Columbia-L charcoal were processed by Program 2 to obtain the 

gas-surface virial coefficients. Program 2, after calculation 

of the weight adsorbed (W^) versus pressure (P), fits these 

data to a suitable nth degree polynomial for two purposes. 

First of all, the versus P plots would not always pass 

through the origiu and it was necessary to correct the 

versus P plots by shifting them up (usually) or down. The 

principal reason for this origin displacement was an unbalanced 

signal i'rf.m the MB to the recorder when the initial charge 

of gas was let into the vacuum bottle containing the MB (i.e. 

- 6  - 1  
the pressure rise from 10 mm to 10 mm or so is almost 

instantaneous). The filtering and damping in the electrical 

system necessary to reduce noise level from vibrations, etc. 

are sufficiently large that the recording system does not 

recover completely. Possible solutions to the problem are 

to let in a few mm of He gas prior to actual adsorption measure­

ments, use a variable leak valve such as those produced by 

Granville-Phillips Co. and using the MB in a more vibration 

free environment. Secondly, poor points were eliminated 

bo lore proceeding futher. Suitable weights are applied to 

the low pressure points before curve fitting. The versus 

P curve is transformed into a versus P curve (by Equation 
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3.9) and lit to an n-1 degree polynomial. The intercept or 

zoroth power term is and first power coefficient is 

C..<j/RT. The V versus P curve is then transformed into a 

(V - V° )/P versus P curve and fit to an n-2 degree poly-
^ ex ex 

nomial or to a first degree polynomial if n=2. The intercept 

now is equal to C^^g/RT and provides a cross check on the 

previous value of C^g/RT. If n is greater than ^ then the 

first power coefficient is equal to D^^^g/RT, etc., while if 

n=2,the curve (V2^-V°^)/P versus P should have zero slope. The 

V° versus T data are collected and fit by the same procedure 

used in Program 4 to obtain -E^g/R and 

The experimental values of and C^^g are used to 

calculate values of Bg/A versus T which are then fed into 

Program 5 to calculate the two-dimensional surface area and 

gas-gas interaction parameters. A brief outline of the method 

of least squares analysis used will now be given. When experi­

mental and theoretical values of Bg are equated, Equation 

3.60 can be written as 

r 
BgCTi) 

^ 4) (T,'") (6.4) 
A 

exp 

where 'T'(T^'*') = ;f/(TT) + ^'(T^'*') and ^'(T^''*) is zero if the 

Barker and Everett monolayer potential is used (see section 

III-D-3 for details on the evaluation of U/ and ^'). If 
XT 2 ,  NutJ, 

T 
i ( 6 . 5 )  
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tiiei 

• r  .  =  
1 

BjCTi)-

exp 
(1. (TV") ( 6 . 6 )  

Now, define 
T = 

N 
/N (6.7) 

and 
N p 

S = E (T - X) 
i 

( 6 . 8 )  

The procedure now is to minimize S by adjusting -E^/R to 

obtain the best value of f. Hence, if Og is knowq, then A 

can be calculated. For the Barker and Everett monolayer 

potential 

°2 = "Ie - o (G 9) 

and for the Sinanoglu and Pitzer monolayer potential 

Og = o (6.10) 

where a is the bulk gas collision parameter obtainable from 

tabulations of Hirschfelder, Curtiss and Bird (60). o is 

not equal to the collision parameter (Ogp) for Sinanoglu 

and Pitzer monolayer potential which can be calculated from 

Equation 3.58 by setting E'''(agp) =0. In certain cases, 

the minimization of Equation 6.8 was not performed, but -E^/R 

was simply incremented over a range such as (-E^/R)/2 -

(-E^/R) and the various parameters printed out with desired 

values chosen by inspection. 
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Tho piocessinK of the MB data to obtain and 

proved to be rather difficult for many of the adsorbate-

adsorbent combinations used. Freeman and Halsey (51) showed 

that a plot of In(-C^^g) versus 1/T should be linear. This 

along with the fact that In T versus 1/T should give 

a linear plot was used to obtain a consistent set of parameters 

by repeated trials. 

B. Low Temperature Nitrogen Adsorption 

The nitrogen adsorption isotherms were measured for all 

three adsorbents at approximately 80°K by use of the MB and are 

shown in Figure 16. The corresponding BET and Langmuir plots 

are shown in Figures 17 and 18 respectively and the best fit 

parameters obtained from these plots are given in Table 4. 

The parameters are tabulated with respect to the n-layer BET 

Equation (2.4) with n=oo again representing the normal BET 

Equation (2.3) and with n=l representing the Langmuir Equation 

(2.16). The best fit value of n was also determined which in 

all eases turned out to be less than 1 (~.9). This represents 

a physically unieal situation (i.e. stating that less than a 

monolayer can be formed) and hence was ignored. 

The BET surl'acc areas are nominal values for adsorbents 

2 
of this type. The average value of 703 m /g for the Silica 

2 
Gel compares with a value of 650 m /g obtained previously 

using a volumetric adsorption apparatus. The Langmuir surface 
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areas are proportionally larger than the BET areas as is 

fully expected. The adsorption data were insufficient to 

determine a Langmuir surface area for Columbia-L charcoal. 

As can be seen in Figures 17 and Ifi^ the BET equation fits 

the data to a relative pressure of 0.2 for Silica Gel and 

approximately 0.12 for.SK charcoal while the Langmuir equation 

fits the data to relative pressures of 0.5. Hence, the 

implications are that more faith should be put into the 

Langmuir areas than the BET areas, but^ from the material 

presented in Chapter II of this dissertation, there are many 

reasons for not accepting the values given as representing 

the true areas of the adsorbents, especially for the activated 

charcoals. 

Consider a cylindrical pore of radius r and length £. 

2 
Its surface area is 2irr^ and its volume is irr £. Suppose 

that the "BET or Langmuir" monolayer capacity actually 

corresponds volume filling of the pore, rather than covering 

its surface. The surface area calculated, erroneously, on the 

surface covering model will be 

a  ( . . 1 1 )  

where v = molecular volume of nitrogen in the liquid state 

°3 
(58.2 A ) and a = molecular cross sectional area taken as 

O 
15.8 A. The ratio of apparent to true area will therefore be 
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= ̂  = 0.27r (6.12) 
^true V 

O 
Where r is in A. As will be discussed later, the charcoals 

apparently have a fraction of the surface area in pores or 

O 
in large cavities with connecting pores of the order 2 A in 

O 
radius, others as large as 20 A in radius, while the Silica 

O 
Gel has pores of the order 20 A in radius. Clearly the ratio 

of apparent to true surface area could vary from 0.5 to 5. 

The values of the parameter C in Table 4 for n=oo can 

be related to the net heat of adsorption through Equation 2.2. 

The validity of Equation 2,2 is questionable at best so that 

the heats of adsorption were not calculated. 

C. Frontal Gas-Solid Chromatography (FGC) 

The use of FGC to measure adsorption isotherms 

(effectively versus P in the low pressure region) was 

an attempt to extend EGC measurements to determine the third 

order gas-surface virial coefficient (C^^g) and from this to 

calculate the surface area of the adsorbent using the two-

dimensional gas film model. 

Adsorption studies were conducted with FGC using argon, 

carbon monoxide and methane on Columbia-L charcoal. Some 

additional studies were conducted using ethylene, ethane and 

carbon dioxide on Silica Gel and Columbia-L charcoal. With 



www.manaraa.com

93 

the latter adsorbates the low pressure portion of the 

adsorption isotherm could not be sufficiently documented to 

evalute and The scatter of the experimental data 

precluded the evaluation of for argon and carbon monoxide 

although could be evaluated with reasonable accuracy. 

Methane proved to be the only adsorbate giving data sufficiently 

accurate to permit the evaluation of both and C^^g. 

The methane adsorption isotherms on Columbia-L charcoal 

are shown in Figure 19 and the gas-surface virial coefficients 

thus determined are given in Table 13 along with values of 

^ex obtained by use of injected samples with the FGC system. 

The data plotted according to Equation 3.42 are shown in 

Figure 20, which also shows the corresponding plots obtained 

for methane on Columbia-L charcoal with the EGC and MB systems. 

The surface areas and interaction potentials evaluated for 

the Henry's Law model by application of Equation 3.42 and 

for the two-dimensional gas film model are given in Tables 

11 and 12 respectively. 

D. Elution Gas-Solid Chromatography (EGC) 

The Henry's Law constants for the adsorption of argon, 

nitrogen, oxygen, carbon monoxide, methane, ethane, ethylene, 

propane, propylene and carbon dioxide on Silica Gel, SK 

charcoal and Columbia-L charcoal were determined over wide 

temperature ranges by EGC. Columbia-L charcoal was used as 
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a check out adsorbent before proceeding with other adsorbents. 

All adsorbates used gave symmetrical chromatographic peaks 

at temperatues such that reasonable retention times with 

minimum peak broading were obtained thereby indicating that 

the measurements were indeed being made in the Henry's Law 

region. The one exception to the previous statement was 

carbon dioxide on SK charcoal. This system gave chromatographic 

peaks with nearly symmetrical tops but with the bottom portions 

exhibiting long sloping tails. Also, a portion of the first 

sample injected appeared to be irreversibly adsorbed. The 

anomalous behavior of carbon dioxide on SK charcoal is apparent­

ly due^ in part, to strong quadrupole interaction with the 

ir-bonds oi the carbon surface (104). 

Experimental values of versus T are given in Tables 

17, 18, 19 for Silica Gel, Columbia-L charcoal and SK charcoal 

respectively. The same data are plotted according to Equation 

3.42 in Figures 21-28. The surface areas and gas-solid inter­

action potentials evaluated for the Henry's Law model by 

application of Equation 3.42 are given in Table 11. 

The reliability of the EGC determination of the Henry's 

Law constant,depends on the particular adsorbate-adsorbent 

combination; the temperature range and carrier gas flow rate 

must also bo considered. For the activated charcoals, as shall 

be discussed later, the gas molecules apparently do not "see" 

all of the available surface even at temperatures of 350°K. 
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Hence, the basic question arises as to just what is actually 

being measured by EGC using the charcoal adsorbents. 

For the Silica Gel adsorbent, a general statement can 

be made that within broad limits the Henry's Law surface 

areas and gas-solid interaction potentials obtained from 

EGC and MB data are in reasonable agreement (compare values 

summarized in Tables 5 and 8). In general, the surface area 

values vary somewhat randomly with the usual trend of lower 

surface areas for larger gas molecules being partially observed. 

A more orderly variation for the gas-solid interaction 

potentials (Table 8) is observed. The gas-solid interaction 

values (as well as surface areas) for the gases Ar-CH^ should 

be lightly regarded since the amount adsorbed was small at 

the temperatures used resulting in large relative errors. 

The values were calculated using only the three or four points 

which gave the best straight line. From Equation 3.4 2 it can 

be seen that a small error in the gas-solid interaction 

potential can be considerably magnified when the surface 

area is calculated. The random scatter in the Henry's Law 

surface areas (Table 5) for the two different runs (1 and 2) 

most probably reflects differences in sample preparation 

(e.g. length and temperature of sample outgassing). 
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E. Vacuum Microbalance (MB) 

In addition to measuring the low temperature nitrogen 

adsorption isotherms on Silica Gel, Columbia-L charcoal and 

SK charcoal, the high temperature adsorption isotherms of 

some or all of the gases argon, nitrogen, carbon monoxide, 

methane, ethylene, ethane and carbon dioxide on the same three 

adsorbents were measured at four temperatures between 0-100°C 

by the MB system. Only the low pressure (0-300 ram) range 

was investigated. 

The numerical high temperature adsorption isotherms are 

given in Tables 20, 21 and 22 for Silica Gel, Columbia-L 

charcoal and SK charcoal respectively. If it was necessary 

to correct the measured isotherms, then the corrected data 

are given in the tables. The gas-surface virial coefficients 

determined from the MB adsorption data are given in Tables 

14 J 15 and 16 for Silica Gel, Columbia-L charcoal and SK 

charcoal respectively. The surface areas and interaction 

potentials evaluated for the Henry's Law model by application 

of Equation 3.42 and for the two-dimensional gas film model 

are given in Tables 11 and 12 respectively. The versus 

T data plotted according to Equation 3.42 are shown in Figures 

29-32. 

The gravimetric measurement of adsorption isotherms using 

the MB has the advantage that the excess volume is unambiguously 

defined by 
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3 MA'RT 
^ex adsorbent) = ^ p (6.13) 

where M is the molecular weight of the adsorbate. If M = 

3 X 10^ mg and T = 300°K, then the change in for a change 

in of 0.001 mg is given by 

(cm3/0.001 mg g> (6.14) 

3 
Therefore, for = 10 cm /g, an error of 1% in reflects 

an error of approximately 0.002 mg/g if P = 10 mm. 

The maximum sample weight that could be used with 

the present MB system set up was 750 mg prior to outgassing. 

The samples lost between 20-50 mg in weight upon outgassing 

thereby setting an effective limit of 0.001 mg on the accuracy 

obtainable with the MB system in its present environment, 

although the MB has a quoted sensitivity of 0.0001 mg for a 

1 g load. 

The MB adsorption data on Silica Gel were sufficiently 

accurate that good values of could be calculated, but not 

sufficiently accurate to evalute » Within the accuracy 

of the measurements, the adsorption isotherms could be 

considered to obey Henry's Law over the pressure range used, 

although sufficiently accurate data would undoubtedly show 

that the adsorption isotherms exhibited a slight curvature. 

The calculated Henry's Law surface areas are comparable to 

those obtained from the EGC data. 
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The MB adsorption data on Columbia-L charcoal and SK 

charcoal were very similar with the same trends observed 

in the calculated parameters for both adsorbents. 

The gases argon, nitrogen and carbon monoxide were 

adsorbed sufficiently by both adsorbents to permit the 

evalution of both and C^^g. There is an estimated 10-

20 per cent error in the 0..^ values obtained while the V° 
AAS ex 

values are accurate within 2-3 per cent. The Henry's Law 

surface areas calculated are approximately 50 per cent 

larger than those calculated from the EGC data. The two-

dimensional surface areas calculated reflect the uncertainty 

in the values. 

The Henry's Law surface areas calculated for methane 

from MB data were larger, by factors of 3-7, than those 

calculated from the EGC data. The two-dimensional surface 

areas were smaller, by factors of 6-20, than the Henry's Law 

surface areas calculated from the same data. 

The high temperature adsorption isotherms for ethylene, 

ethane and carbon dioxide were measured only on SK charcoal. 

The calculated Henry's Law surface areas are from 30 per cent 

less to 75 per cent greater than the corresponding EGC values. 

The two-dimensional surface areas for ethylene and ethane 

are less by factors of 2 and 5 respectively than the Henry's 

Law surface areas. The two-dimensional and Henry's Law 

surface area for carbon dioxide differ by only 30 per cent. 
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The gas-surface virial coefficients evaluated from the MB 

data appear to be precise to within 1-2 per cent. However, 

even at the highest temperatures at which data were taken, 

the amounts adsorbed even in the low pressure range were 

sufficiently large to make it uncertain that the intercept 

and initial slope of the plot of versus P were correctly 

established. 

See Tables 5, 6 and 7 for more direct comparisons of the 

previously stated observations. Possible explanations for these 

observations will be presented in the next section. 

The gas-solid interaction potentials calculated from the 

MB data are lower than the corresponding EGC values. The 

larger MB Henry's Law surface area values reflect, in part, 

the decrease in the gas solid interaction potentials. The 

same trends are observed for both the MB and EGC gas-solid 

interaction potentials. 
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VIIo DISCUSSION 

A. General 

The Henry's Law and two-dimensional surface areas 

calculated for the adsorbents Silica Gel, Columbia-L charcoal 

and SK charcoal from the EGG, FGC and MB data are summarized 

in Tables 5, 6 and 7 respectively. The corresponding gas-

solid interaction potentials are summarized in Tables 8, 9 

and 10. 

A detailed error analysis of the experimental data and 

calculated parameters will not be made. Brief discussions of 

the accuracy of the data obtained by the various experimental 

techniques have been give in the appropriate places. Apart 

from the questions that have arisen pertaining to the interpre­

tation with the EGC and MB systems, the principal errors in 

the evaluation of the gas-solid interaction potentials result 

from curve fitting of the experimental data. But, as Equation 

3.42 shows, a small error in the gas-solid interaction potential 

is magnified in the evaluation of the intercept of the experi­

mental plot and hence, in the evaluation of AZ^ from which the 

surface area is calculated once a value for is known. The 

calculation of Z as well as the uncertainties in the values 
o 

calculated has been discussed in Section III-G. Therefore, 

after all things have been considered, it can be estimated 
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that there is a 10-20 per cent uncertainty in the surface 

area values given in Tables 5, 6 and 7, but nowhere near 

the factors of 6 to 20 that arise if either of the BET 

areas Kivcn in Table 4 are accepted as representing the 

true area of the adsorbent. 

Also, all theoretical derivations of the two-dimensional 

gas and gas-solid virial coefficients have assumed that the 

solid acted as a homogeneous continuum and that a uniform 

potential energy field exists over the entire surface. But, 

it is almost certainly true that the surfaces of most adsorbents 

can be classified as heterogeneous rather than homogeneous. 

Surface heterogeneity can result from the existence of capil­

laries, different crystal planes exposed, variation in surface 

chemical composition and a number of other sources. The 

capillary surface problem has, in principle, been solved in 

Section III D-2(b). Freeman (54) has expressed the view that 

"within limits, this high temperature approach to physical 

adsorption is not bothered by surface heterogeneity". The 

treatment of the solid adsorbent as a continuum has converted 

the 6-12 molecular-molecular interacting potential law into a 

3-9 molecular-surface potential law. It has also been necessary 

to assume that the gas molecule can be represented as a point 

particle. Spherical molecules such as the rare gases and 

nearly spherical molecules such as methane can be represented 

as point particles without stretching the analogy very far. 
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For gases such as nitrogen, carbon monoxide, ethylene, 

ethane, propylene, propane, and carbon dioxide the approxima­

tion as point particles does indeed become strained. Hence, 

for these molecules the theoretical potential energy curves 

should be derived with the inclusion of molecular orientation 

effects which present formidable, if not insurmountable , 

theoretical problems. Everett (105) has given an excellent, 

but simple, discussion on the effect of surface heterogeneity 

on the adsorption isotherm and on the theoretical evaluation 

of the adsorption potential energy curve. 

Some discussion has been given at various times as to the 

applicability and accuracy of the experimental methods described 

in this dissertation. There are two basic approaches that can 

be taken in physical adsorption studies and they are (1) study 

the adsorption of a single adsorbate by series of adsorbents 

of the same structural type or (2) study the adsorption of a 

series of adsorbates on a single adsorbent. The usual approach 

to a study of physical adsorption is to take a combination of 

the two basic approaches. If the amount adsorbed for a specific 

adsorbate by an adsorbent at a given temperature is known, then 

rough estimates can be made as to adsorption of other adsorbates 

on other adsorbents and at other temperatures. It is this 

inner relationship between amount adsorbed, adsorbate, adsorbent 

and temperature that governs the applicability and accuracy of 

an experimental method. The experimental methods described in 



www.manaraa.com

103 

this dissertation have a practical lower temperature limit 

of 0°C. Although various liquid and dry ice slushes can 

be prepared to obtain lower temperatures, considerable 

difficulties are encountered in maintaining constant temperatures 

for extended periods of time. In order to maintain constant 

temperatures between -196 and 0*C,it is necessary to use a 

suitably designed cryostat. A high precision adsorption 

apparatus for studying "high temperature" adsorption over 

this temperature range has been described by Constabaris al. 

(106). The previous statements indicate, in part, the 

desirability of initially studying the high temperature 

adsorption of various adsorbates on different adsorbents by 

different experimental techniques. Ideally, if from the 

Henry's Law and/or two-dimensional gas film models the surface 

area(s) calculated can be specified as representing the "true" 

area of the adsorbent, then instead of changing the temperature 

range and/or experimental method to accommodate the adsorbent, 

the adsorbate could be changed to accomplish the same purpose. 

The advent of modern high speed computers has made use 

of theories requiring long and complicated calculations 

practicable. Through the use of Equation 3.42, Henry's Law 

surface areas and gas-solid interaction potentials can be 

readily determined without recourse to a computer, but the 

application of the two-dimensional gas film model will, in 



www.manaraa.com

104 

general, require the use of a computer. 

B. Silica Gel 

Summaries of the Henry's Law surface areas and gas-

solid interaction potentials are given in Tables 5 and 8 

respectively. 

In Table 8 containing the gas-solid interaction potentials, 

there are two principle points of interest. For the gases 

argon, nitrogen and carbon monoxide the trend of increasing 

gas-solid interaction potentials is essentially the opposite 

to that observed for the corresponding gas-gas interaction 

potentials (see Table 14) indicating that orientation effects 

are more important in gas-surface interactions than in gas-

gas interactions. The second region of interest is the change 

of the gas-solid interaction potentials over the series methane -

propane. Both the gas-gas interaction potentials and gas-

solid interaction potentials for the activated charcoals 

(Tables 9 and 10) show a trend of increasing potential over 

the series, but for Silica Gel the interaction potentials 

for ethylene and propylene are greater than the interaction 

potentials for ethane and propane respectively. The polariz-

abilities'*' parallel to the C-C bonds of ethylene and ethane 

— 24 3 
are 5.61 and 5.48 x 10 cm respectively, while the correspond­

i n g  a v e r a g e  p o l a r i z a b i l i t i e s  a r e  4 . 7 6  a n d  4 . 4 7  x  1 0 " c m ^ .  

'•'See table on page 179 of Reference 5. 
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Hence, it is insufficient to simply wave off the anomalous 

behavior as due to the polarizabilities of the molecules. 

A more reasonable explanation should include the basic dif­

ferences in the bonding of the surface atoms. The surface 

of carbon adsorbents is presumed to have a graphite structure 

with ̂ -electron orbitals determining the adsorption properties 

while the surface of the Silica Gel consists of oxide ions 

bonded through a crystal lattice. The possibility that the 

carbon surface contains various oxygenated species can not be 

completely excluded. 

There isn't a great deal that can be said about the 

surface area values given in Table 5. The choice is between 

2 
accepting the BET area of 700 m /g, the Langmuir area of 

2 2 
~1000 m /g or a value of 70-90 m /g from Table 5. The low 

temperature nitrogen adsorption isotherm in Figure 16 is 

clearly of Type I. A large amount of the difference among the 

values for a given gas can be attributed to variations in the 

exposed surface caused by differences in sample outgassing 

as well as length of time over which the experimental data 

were taken. Observations on the rate of adsorption with the 

MB system indicated almost instantaneous equilibration with 

all adsorbates used at temperatures above 0°C. Although no 

specific data on the pore size distribution for the Silica 

Gel was determined, minimum pore radii for similar Silica Gels 

O 
have been given as 10-30 A. The pores of Silica Gel are 
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usually found to be slit-shaped versus cylindrically shaped. 

Steele and Halsey (52) have shown that slit-shaped pores have 

considerably less effect in terms of an apparent area as 

shown in Figure 6 than cylindrical pores. Therefore, although 

considerable variation occurs among the Henry's Law surface 

areas, there are several reasons to expect that they more 

closely represent the true surface area of the Silica Gel 

than do either the BET or Langmuir values of the surface 

area. 

None of the experimental techniques used in the present 

studies on Silica Gel provided sufficiently accurate data over 

the temperatures used to permit the evaluation of the surface 

area using the two-dimensional gas film model. 

C. The Activated Charcoals 

Summaries of the surface areas evaluated by application 

of the Henry's Law and two-dimensional gas film models for the 

Columbia-L charcoal and SK charcoal are given in Tables 6 and 

7 respectively. Summaries of the corresponding gas-solid 

interaction potentials are given in Tables 9 and 10. The 

two-dimensional gas film model gas-gas interaction parameters 

are summarized in Table 12. Included in the summaries are the 

parameters evaluated by Hansen jet (100) that have been 

corrected for an incorrect chart speed. Since, for practical 

purposes, any trends or anomalies observed for one charcoal 
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were also observed in the other charcoal, the discussion will 

consider both charcoals together, except for the FGC results 

which were limited to methane on Columbia-L charcoal. 

A comparison of the gas-solid interaction potentials 

determined by EGC in the present study and by Hansen ejt al. 

(100) shows some anomalous but not readily explainable 

features. The gas-solid interaction potentials (as well as 

corresponding Henry's Law surface areas) agree perfectly for 

ethylene and propane, but there is considerable disagreement 

for the other gases where direct comparisons can be made. 

It would be expected that small differences would occur on 

the Columbia-L charcoal simply because of slight differences 

in sample preparation and general experimental procedures 

between the present and past investigators, although the samples 

were taken from the same batch of charcoal. The large difference 

observed for nitrogen iy disturbing, but the fact that near 

perfect agreement is observed for ethylene and propane is 

encouraging. While the gas-solid as well as gas-gas interaction 

potential for ethane is larger than that for ethylene, the 

effective diameter of the ethylene molecule is larger than that 

for ethane (4.52 versus 3.95) as determined by the gas-gas 

collision parameter. Hence, the observations that all molecules 

that are effectively smaller than ethylene show greater inter­

action potentials for the present set of data, but with the 

magnitude of the difference decreasing as the size of the 
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molecule increases, most certainly indicates the effect of a 

porous structure. 

The ^as-solid interaction potentials for a given 

experimental technique generally increase as the size of 

the gas molecule increases (ethane and propane are exceptions). 

The gas-gas interaction potentials for the light hydrocarbons 

follow a similar trend. 

A few comments on the interaction parameters evaluated 

for the two-dimensional gas film model are in order. It had 

been hoped that FGC would provide sufficiently accurate data 

to permit the application of the two-dimensional gas film 

model and that the MB system would expand the range over which 

useful data could be obtained. As can be seen from the error 

limits placed on surface areas in Table 12^ the application of 

the model was not very successful for the charcoal adsorbents. 

The experimental errors have been discussed previously and 

the effect of the various types of surfaces will be discussed 

later. The second parameter of importance is f which relates 

the gas-gas and gas-gas surface interaction parameters 

.U  O  _  "I  / ÇL 
through E'^' = f and a'*' = (Ç) o. The values of ^ 

approximately equal to 0,9 are in agreement with values obtained 

by other workers using various carbon adsorbents. 

It remains to discuss the values given in Tables 6 and 7 

for the surface area of the charcoal adsorbents. The relation­

ship between the Henry's Law surface area and gas-solid 
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interaction potential "E^g/R is given by Equation 3.42. 

Hence, the discussion of the Henry's Law surface areas will 

indirectly reflect the values of -E^'g/R. It shall be con­

venient to compare the Henry's Law surface areas calculated 

from the experimental data in the following order: 1) EGC 

and MB, 2) EGC and FGC and 3) FGC and MB. Secondly, the 

change in the surface area calculated for the series of gases 

for a particular experimental method will be discussed. Last 

of all, the surface areas calculated from the MB data using 

the two-dimensional gas film, model will be compared with the 

Henry's Law surface areas calculated from the same data. 

All of the surface area values given in Tables 6 and 7 were 

calculated from a plane surface model. The use of the MB 

system permits visual observation of the relative rates of 

adsorption through the time required for the system to achieve 

equilibrium. The gases argon, nitrogen and carbon monoxide 

came to equilibrium very rapidly with the addition of more gas 

to the adsorption system. The gases methane, ethane, ethylene 

and carbon dioxide required considerable time for equilibrium 

to be achieved after each addition of gas to the adsorption 

systenv although approximately 70-80 per cent of each addition 

was adsorbed quite rapidly. A general decrease in equilibration 

times was observed as the temperature was increased. 

It is immediately obvious that a plane surface model 

alone cannot explain the differences in the Henry's Law 
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surface areas calculated from the MB and EGC data for a 

given adsorbate. Hence, the capillary surface model of Steele 

and Halsey (52) was extended (Section III - A -2) to include 

a repulsive potential to aid in the interpretation of the 

calculated Henry's Law surface areas. The apparent area 

(A = A , /A ) and the apparent interaction potential 
^ app plane cap. 

^^AS^^AS^ ^ function of the capillary radius R divided by 

are shown in Figures 6 and 7 respectively. In order for 

an adsorbate-adsorbent system to achieve true equilibrium, 

the adsorbate must be able to get to the available surface 

area. The average time of passage for a gas molecule through 

a capillary was developed (Section III - F) and is shown as 

a function of -E^'g/RT in Figure 8. It shall be assumed that 

any capillaries present in the adsorbents are cylindrical in 

shape. Cross sections of three possible ideal surfaces are 

shown in Figure 33. Figure 33(a) shows the plane surface 

model, Figure 33(b) shows a capillary surface model consisting 

of two capillaries with different radii and Figure 33(c) shows 

a capillary surface model consisting of sections of capillaries 

with large radii connected by short sections with small 

radii. 

The experimental values of V° and the observations on the 
ex 

time required to achieve equilibrium indicate the presence of 

capillaries with very small diameters. A possible model for 

the surface of the charcoals is as follows. If A is the true 
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area, including capillary walls, of a porous adsorbent, then 

the area A' obtained from a plane model satisfies 

A' < A (7.1) 

Now, if it is assumed that the charcoal surface area consists 
O 

of a fraction a in capillaries with mean radii of R < 5 A and 

of a fraction (1-a) in capillaries with mean radii large 

compared to S^, then for the MB data 

Afc -  A [ a  X A^pp(R/S^) + ( l - a ) ]  (7.2) 

where it has been assumed that the entire area is available 

to the gas molecule. In the EGC column, the adsorbate sample 

spends only a small amount of time in the vicinity of an 

adsorbent particle. Hence, if the true gas-solid interaction 

potential -E^*^/R was determined from Figure 7 for the small 

capillaries, the use of Figure 8 would show that a molecule 

would not penetrate very far into the capillary in the 

available time. Therefore, if it is assumed that the small 

capillaries are not seen in the EGC data, 

AdGC = A * (1-a) (7.3) 

Now, 

" * Aapp(*/So) + (1-a) 

Equation 7.4 predicts that the ratio should decrease 
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as increases. The ratios calculated for the series argon, 

nitrogen, methane, ethane and ethylene on SK charcoal are 

1.85, 2.68, 4.25, 1.55 and 1.28 respectively. Therefore, 

although the adsorption data indicates the presence of capil­

laries with very small diameters, cylindrical capillaries 

alone cannot account for the large differences in the Henry's 

Law surface areas which is especially noticeable for methane 

on Columbia-L charcoal. 

The calculation of a larger Henry's Law surface area from 

the MB data than from the EGC data reflects an increase in 

the amount adsorbed at a given temperature. It is also 

observed that the ratio (V° )™/(V° ) increases as the 
0X iVlD 0X JCfLiLf 

temperature increases. The significance of the last statement 

is difficult to ascertain. As the temperature of the adsorbent 

is increased, more of the internal surface existing in capillaries 

should become available to the gas molecules with the EGC 

system and hence, it would be expected that the excess volume 

ratio should increase if anything. It should also be pointed 

out that the MB data was taken over the temperature range of 

273-350°K while the EGC data was taken over the temperature 

range 350-500°K. 

It has been observed that extremely low values (< 1 m^. g) 

are obtained for the BET surface areas of some coals when 

calculated from low temperature nitrogen adsorption data, 

2 
but more nominal values (~100" m /g) of the surface 
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areas are obtained when calculated from the heat of immersion 

in methonal. Maggs (107,108) has concluded that the surface 

area values calculated from the low temperature nitrogen 

adsorption data were in error. Gregg and Pope (109) have 

calculated the BET surface areas for a series of vitrains from 

the adsorption of nitrogen at -196°C, nitrogen at -183°C and 

butane at 0°C and the BET surface areas for each vitrain con­

tinuously increase as the temperature of the adsorption is 

increased. Maggs (110) and Zwietering ^^t aJL. (Ill) have 

explained this anomalous behavior in terms of an capillary 

surface model such as the one shown in Figure 33(c) with narrow 

constrictions connecting enlarged sections. The passage of 

gas molecules through the narrow constrictions is considered 

to be an activated process which reflects the time required 

for the molecules to pass through the constriction, if the 

size of the molecule will permit to to pass through the 

capillary. 

While in the present adsorption studies an increase in 

adsorption is not observed as the temperature is increased, 

the fact that a larger calculated from the MB data than 

from the EGC data may result from this effect. Hence, 

although the behavior of the ratio of the Henry's Law 

surface areas cannot be explained through the presence 

of cylindrical capillaries, the behavior of the Henry's Law 

ratio can be explained, in part, through a combination of 
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the adsorbent surface models (Figure 33) consisting of portions 

of plan^ large cylindrical capillaries and cylindrical capil­

laries containing enlarged sections. The enlarged sections 

of the capillary must be, by necessity, quite large. Relative­

ly small spherical shaped sections would have an even greater 

effect on the apparent area (Figure 6) than simple cylindrical 

capillaries. The trend of increasing Henry's Law ratio from 

argon-methane followed by smaller ratios for ethane and 

ethylene indicates the presence of constrictions with diameters 

in the range of 3-5 A, i.e., large enough to permit passage of 

molecules the size of methane or smaller, but not molecules 

that are very much larger than methane. Whether or not a 

molecule can pass through a constriction will, of course, 

reflect the true value of the gas-solid interaction potential 

-E^g/R to the extent that it can be determined from Figure 7 

and the time of passage through the constriction as indicated 

by Figure 8. 

It would appear that the Henry's Law surface areas 

calculated from the EGC data are incorrect since apparently 

the injected gas sample spends insufficient time in the 

presence of an adsorbent particle for the gas to "see" all 

of the available surface area. At the same time, the question 

arises as to what the Henry's Law surface areas calculated 

from the MB data mean, especially in the case of methane. 

It appears that in the MB data the gases argon, nitrogen and 
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carbon monoxide can "see" all or most of the available surface. 

Methane "sits on the fence" so to speak between the lighter 

gases and the Cg and hydrocarbons in regard to all experi­

mentally determined gas-gas and gas-solid interaction parameters. 

The size and gas-solid interaction potentials for the Cg and 

Cg hydrocarbons are apparently sufficiently large to prevent 

the molecules from "seeing" all of the available surface. 

In view of the previous discussion, comparisons of the 

Henry's Law surface areas calculated from FGC-EGC data and 

from FGC-MB data will be considered together. The Henry's 

Law surface areas calculated for methane on Columbia-L charcoal 

(Table 6) from data taken on the FGC system lie between the 

the EGC and MB values. Hence, it is apparent that more of 

the available surface is being "seen" in the FGC data than in 

the EGC data but not as much as in the MB data. This reflects 

an increase in the amount of time in which equilibrium can 

be achieved, but since the experimental values are determin­

ed from the appearance of the adsorption front, insufficient 

time existed for true equilibrium to be achieved. But, values 

of determined on the FGC system for argon and carbon 

monoxide on Columbia-L charcoal at 0 and 25°C agree with the 

MB values within 5 per cent. 

In view of the previous discussion, it is not surprising 

that there is a general trend of decreasing surface area with 

increasing size of the adsorbate molecule. Similar effects 
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have been observed in BET surface areas evaluated for "porous" 

adsorbents (112) and in low area "non-porous" adsorbents 

(113) . 

The surface areas calculated using the two-dimensional 

gas film model and the Henry's Law model should be equivalent. 

As can be seen in Tables 6 and 7, the values for the Henry's 

Law and two-dimensional gas film surface areas calculated 

from the MB and FGC data do not show very good agreement. 

Once again, methane represents the dividing line between 

normal and abnormal results. While the surface areas for the 

gases argon, nitrogen and carbon monoxide should be accepted 

only as approximate values, they do indicate that most of the 

available surface is being seen by the gas molecules. In many 

respects, the two-dimensional gas film surface area values for 

methane, ethane and ethylene simply reflect the anomalous 

behavior of the Henry's Law surface areas for the same gases. 

The low values for the two-dimensional gas film surface areas 

can arise from either low values of or high values of C^^g. 

For the larger gas molecules, the values of are probably 

too high due to the simultaneous interaction of more than two 

molecules in the capillaries. Hence, while the exact reasons 

for the anomalous behavior may be obscure, it can be safely 

stated that capillaries with narrow constrictions must be 

present to explain the results. 
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What are the true surface areas of the charcoal adsorbents? 

For SK charcoal, the choices lie between the BET and Langmuir 

2 
values of ~900 and ~1100 m /g adsorbent respectively or the 

2 
200-250 m /g adsorbent calculated from the high temperature 

adsorption of the smaller gas molecules. For Columbia-L 

charcoal, the corresponding choices are ~1200 and an estimated 

2 2 
value of 1600 m /g adsorbent or 250-300 m /g adsorbent. In 

view of the problems associated with the interpretation of the 

high temperature adsorption data, it is no wonder that the 

interpretation of low temperature adsorption presents even 

greater problems with the theoretical ambiguities in addition 

to effects such as capillary condensation. Hence, while there 

exists some uncertainties in the surface areas calculated from 

the high temperature adsorption data, there is ho reason not 

to accept the surface areas calculated as being more representa­

tive of the true surface area of the adsorbents than the BET 

and Langmuir surface areas. 
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VIII. SUMMARY 

Three high temperature gas adsorption techniques, namely 

elution gas-solid chromatography, frontal gas - solid 

chromatography and microbalance gravimetry, have been studied 

as sources of surface area measurements. Surface areas have 

been calculated from high temperature adsorption data both 

from the temperature dependence of the initial isotherm 

slope (Henry's Law constant), which also provides gas-solid 

interaction potentials, and from the third virial coefficients 

for gas-solid interaction. Surface areas of all adsorbents 

studied were also obtained by the standard Brunauer-Emmett-

Teller (BET) method based on nitrogen adsorption at liquid 

nitrogen temperatures. 

The adsorbents studied were two activated charcoals and a 

silica gel; all were known to be porous adsorbents. All high 

temperature methods gave surface areas less, by factors as 

large as twenty, then the BET surface areas. For a given 

adsorbent, areas obtained by different techniques were in the 

order BET > microbalance > frontal gas-solid chromatography > 

elution gas-solid chromatography. The results obtained 

for the charcoals were consistent with an adsorbent model 

featuring large cavities connected by channels of molecular 

dimensions. The connecting channels introduce a transit 



www.manaraa.com

119 

time requirement such that adsorption methods with short 

characteristic times, such as elution gas-solid chromatography, 

will not measure appreciable fractions of the cavity surface 

area, particularly if the adsorbate molecule is larger. It 

was found that the surface areas obtained from the high 

temperature techniques agreed more closely if the adsorbate 

molecule was larger than methane then if the adsorbate 

molecule was smaller than methane. The results obtained 

for the Silica Gel were not greatly affected by its porous 

structure. 

The BET surface areas are probably unreasonably high and 

the indicated "monolayer capacity" on which these areas are 

based may actually represent a filling of cavity volumes by 

liquefied adsorbate. In principle, there appears to be no 

basis for considering BET surface areas more accurate than 

areas based on high temperature adsorption using techniques 

such as microbalance gravimetry with long equilibration times. 
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APPENDIX A: FIGURES 
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Figure 1. 
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RELATIVE PRESSURE (P / PQ) 
The five types of adsorption isotherms according to the classification 
of Brunauer, Deming, Deming and Teller (BDDT) 
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Figure 2. Typical t-plots for (a) a porous adsorbent and (b) a non-
porous adsorbent 
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Figure 3. (a) The potential energy of a molecule as 
function of the distance from the 
surface. 

(b) The average concentration of molecules 
as a function of the distance from the 
surface as calculated by the Boltzmann 
distribution law for -ETgAT =3. 
is the bulk gas concentration and the 
shaded area represents the surface 
excess of gas molecules 
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Figure 4. The potential energy of a molecule in capillaries of various radii (R) 
as a function of the distance from the surface of the capillary. E'r„ 
and are gas-plane surface interaction parameters 
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Figure 5. Intermolecular potential energy curves for (a) 

Lennard-Jones (6-12) bulk gas potential, (b) 
Sinanoglu and Pitzer monolayer potential and 
(c) Barker and Everett monolayer potential 
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Figure 6. Dependence of the apparent area (A , /A ) 
of a cylindrical capillary on capillary size' 
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Figure 7. Dependence of the apparent minimum gas-surface interaction 
potential of a cylindrical capillary on capillary size 
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Figure 8. The average time required for a molecule to pass through a 
capillary of length ^ or as a function of the minimum gas-
surface potential energy. The primes (f) indicate that the 
diffusion coefficient has been corrected to include surface 
migration by a hopping molecule mechanism 
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Ideal chromatograms for linear gas-solid 
chromatography obtained from (a) step and 
(b) impulse input functions 
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Figure 10. Thermal conductivity detector design 
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TIME—• 
Experimental chromatograms with superimposed 
neon peaks for (a) elution gas chromatography 
and (b) frontal gas chromatography 
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Figure 13. A schematic diagram of the frontal gas chromatography system 
with the following components: 

C chromatographic column 
D'S differential flow controllers 
F'S microvalve-flowmeters 
F1,F2,F3 soap film flowmeters 
G1,G2 helium carrier gas supply 
G3 adsorbate gas supply 
M's mercury U-tube manometers 
SI high vacuum stopcock - Eck + Krebs Inc. #4870 
82 " " " " " " #4916 
S3 " " " " " " #4902 
TC thermoconductivity detector 
V needle valve 
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Figure 14. A schematic diagram of the gravimetric adsorption system 
with the following components: 

B 1 in. ID stainless steel bellows 
BPG bourdon tube pressure gage 
C's 0.009 in. ID capillary tubing 
CPG compound pressure gauge 30 in. vac. -0-15 p.s.i.g. 
DP 3-stage mercury diffusion pump - OS M 22DP120 
FP*s fore pumps - Welch M-1400 
GS adsorbate gas suppxy 
IG ion gauge 
MB microbalance encased in vacuum bottle 
PG pressure gauge 0-30 p.s.i . g .  
SI large bore high vacuum stopcock 
ST 5 liter pyrex gas storage bulb 
Tl's liquid nitrogen traps 
T2 dry ice - acetone tran 
VI's Vecco FR-38-S vacuum valves 
V2 Vecco FR-150-S vacuum valve 
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Figure 15. Photograph of the gravimetric adsorption system 
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Figure 16. Low temperature nitrogen adsorption isotherms 

obtained using the gravimetric adsorption 
system 
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The nitrogen adsorption data plotted according 
to the BET Equation (2.3) 
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Figure 18. The nitrogen adsorption data plotted according to the Langmu 
Equation (2.16) 
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Figure 20. Dependence of the excess volume in the limit of zero 
pressure on temperature. Values of are per g adsorbent. 
Open circles are experimental data points while the solid 
lines represent the limiting tangents calculated by use 
of Equation 3.42 
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Figure 25. (see Figure 20) 
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Figure 26. (see Figure 20) 
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Figure 32. (see Figure 20) 
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(b) CAPILLARY SURFACE 

( c )  C A P I L L A R Y  S U R F A C E  

WITH ENLARGED SECTIONS 

( a )  P L A N E  S U R F A C E  

CROSS SECTIONS OF IDEAL SURFACES - 0 DENOTES ADSORBATE MOLECULES 
Figure 33. Possible models for an adsorbent surface 
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2 
Table 1. Two-dimensional virial coefficient Bp/CNiJO ) for 

the Sinanoglu and Pitzer monolayer potential 

4 Ë^/kT T?= 0.00 0.01 0.02 0.03 0.04 0.05 

1.0 . 2774 . 2888 .3001 .3115 .3228 .3340 

1.2 . 2481 .2618 .2756 .2893 .3029 .3165 

1.4 .3166 . 2328 . 2490 . 2651 . 2811 . 2971 

1.6 . 1833 .2020 .2207 . 2393 .3578 .2762 

1.8 . 1483 .1696 .1980 .2120 . 2330 . 2539 

2.0 . 1116 .1356 . 1595 ..1833 . 2069 . 2304 

2.2 .0734 . 1002 . 1268 .1532 . 1795 . 2057 

2.4 .0337 .0633 .0927 .1220 . 1510 .1799 

2.6 -.0076 .0250 .0573 .0894 .1213 . 1530 

2.8 -.0504 -.0148 .0206 .0556 .0904 . 1250 

3.0 -.0978 -.0560 -.0176 .0206 .0584 .0960 

3.2 -.1408 -.0987 -.0571 -.0158 .0252 .0658 

CO
 

-.1884 -.1430 -.0980 -.0534 - .0092 .0347 

3.6 -.2377 -.1888 -.1404 -.0924 -.0445 .0024 

3.8 -.2888 -.2362 -.1842 -.1327 -.0816 -.0310 

4.0 -.3417 -.2853 -.2296 -.1743 -.1197 -.0655 
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Table 2. Values of X and S o o 

O O 

Adsorbent Gas X„(A) 80(A) 

Carbon Ar 

c8 
CH4 
C2H4 

C3H6 
C3H8 
COo 

02 

2 . 9 2  
3 . 0 4  
3 . 0 7  
3 . 1 0  
3 . 4 0  
3 . 1 6  
3 . 7 8  
3 . 8 8  
3 . 3 8  
3 . 0 0  

2 . 4 3  
2 . 5 3  
2 . 5 6  
2 . 5 8  
2 . 8 3  
2 . 6 3  
3 . 1 5  
3 . 2 3  
2 . 8 2  
2 . 4 9  

Silica Gel Ar 

: g  

CH4 
C2H4 

C|H« 
C3H8 
COo 

°2 

2 . 6 6  
2 . 7 9  
2 . 8 2  
2 . 8 4  
3 . 1 4  
2 . 8 7  
3 . 5 2  
3 . 5 8  
3 . 1 3  
2 . 7 4  
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c. 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Coefficients of polynomials resulting from curve fitting 
thermocouple and pressure gage calibrations. 

T(°C) = E (EMF)i and P(mm) = E (Gage)^ 
o o 

Pressure Gage (3 sections) 

Thermocouple 0.0 - 40.654 - 131.807 -
( 0 - 4  m v )  4 0 . 6 5 4  1 3 1 . 8 0 7  2 0 2 . 3 6 6  

0.015482 
20.582000 
3,328350 
-7.628977 
6.636682 
-2.751990 
0.355424 
0.113904 
-0.043864 
0.004211 

0.000000 
4.080819 
•1.004453x10"^ 
2.798809x10-4 
-3.291307x10"' 

•2.234061x10 
6.326739 
-9.602928x10-2 
2.202006x10-3 
-2.929498x10-5 
2.254286x10-7 
-9.274017x10-9 
1.574392x10-11 

-6,698958x10 
24.775299 
-0.252695 
1.522414x10-2 
-4.528038x10-5 
5.326712x10-8 

to 
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Table 4. Best fit values obtained by use of the BET equations 

Adsorbent n W, m 
(mgg-1) 

Surface 
area 
(m2 g-1) 

St. dev. 
X 104 

Silica Gel 1 
Run 1 

Silica Gel 1 
Run 2 

SK charcoal 1 
Run 2 

Columbia-L oo 
charcoal 

SK charcoal oo 
Run 1 

SK charcoal oo 
Run 2 

SK charcoal oo 
Run 1 and 2 

Silica Gel oo 
Run 1 

Silica Gel oo 
Run 2 

303.021 

289.558 

330.277 

349.603 

265.643 

262.745 

264.067 

204.531 

209.328 

1029.4 

983.6 

1122 .0  

1187.6 

902.4 

892.5 

897.0 

694.8 

711.1 

28 

35 

83 

1377 

1836 

2116 

2090 

235 

178 

. 1 6  

.09 

. 1 0  

. 0 8  

. 0 2  

.02 

. 0 2  

. 0 6  

.03 

Table 5. Summary of surface ares (m /g) calculated from 
experimental Henry's Law (HL) constants for 
Silica Gel 

Gas MB-HL EGC-HL 
Run 1 

EGC-HL 
Run 2 

Ar 112.2 73.6 50.3 
N2 74.0 37.0 69.5 

c8 90.2 63.3 
75.9 

CH. 67.8 55.7 87.7 
C2B4 62.0 35.1 

^3*6 

92.2 
33.8 

51.6 
24.4 ^3*6 

47.1 35.6 
32.8 
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Table 6. Summary of surface areas ( m ^ / g )  calculated from 
experimental Henry's Law (HL) constants and Bg/A (2D) 
values for Columbia-L charcoal 

Surface Areas 

Gas EGC-HL EGC-HL^ FGC-HL^ FGC-HL FGC-2D MB-HL MB-2D 

Ar 210 314.5 260 

gg 
46,4 143 279.5 240 

gg 148 253.0 276 
CH4 101.1 148 170.5 418.7 204 794.8 40 
C2H4 125.5 129 
C2H6 80.9 137 
CgHg 106.6 76 

77.7 78 

^Taken from Hansen e_t aJ. (100), but corrected for 
proper chart speed. 

^Injected samples. 

o 
Table 7. Summary of surface areas (m/g) calculated from 

experimental Henry's Law (HL) constants and Bg/A 
(2D) values for SK charcoal 

Surface Areas 

Gas EGC-HL MB-HL MB-2D 

Ar 144.9 
No 130.9 
02 113.9 
CO 
CH. 139.0 
CgHj 102.6 
CgHg 117.4 
C3H0 70.2 
C3H3 59.1 
COg 77.4 

227. 3 188 
243. 3 270 

216. 6 245 
367. 7 60 
135. 5 76 
192. 0 43 

55.2 44 
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Table 8. Summary of gas-solid interaction potentials for 
Silica Gel 

-sîs/R 
Gas MB EGC 

Run 1 
EGC 
Run 2 

Ar 1448 1736 1748 
N2 1598 2055 1614 

g§ 
1564 

g§ 1731 1934 
CH. 2086 2199 1860 
C2H4 2846 3097 
CgHg 2550 2788 
C3H6 3634 3785 
CoHR 

c3/ 
3247 3340 CoHR 

c3/ 3031 

Table 9. Summary of gas-solid interaction potentials for 
Columbia-L charcoal 

Gas MB EGC EGC& FGC FGC^ 

Ar 1790 1931 

c8 
1887 2627 2122 

c8 2062 2191 
CH. 2233 2800 2585 

'4t 3570 3562 '4t 3986 3744 
C3H6 4560 4780 

^3^8 4824 4829 

^Taken from Hansen a^. (100). 

^Injected samples. 
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Table 10. Summary oJ' gas-solid interaction potentials for 
SK charcoal 

Gas EGC MB 

Ar 

CH4 
C2H4 

:::: 
co„ 

2036 
2103 
2122 

2631 
3706 
3845 
4889 
5053 
3246 

1907 
1908 

2100 
2430 
3600 
3695 

3321 

Table 11, Gas-solid interaction parameters evaluated for the 
Henry's Law model 

Adsorbent 
and Gas 
system 

-BAg/R -In AZ_ 0 
AZo 
(cm3) /g) St. d( 

1448 3 .5116 0.03985 112 .2 0.011 
1598 3 .8805 .02064 74 .0 .004 
1731 3 .6712 .02544 90 .2 .004 
2086 3 . 9505 .09125 67 .8 .006 

1790 2 .3878 .09183 314 .5 .01 
1887 2 .4656 .08496 279 .5 .01 
2062 2 .5552 .07768 253 .0 .005 
2233 1 .4008 .2464 794 .8 .016 

1907 2 .7125 .06637 227 .3 .014 
1908 2 .6041 .07397 243 .3 .007 
2100 2 .7107 .06649 216 .6 .007 
24 30 2 .1713 .1140 367 . 7 .014 
3600 3 .0778 .04606 135 .5 .012 
3695 2 .8025 .06066 192 .0 .002 
3321 3 .9815 .01866 55 . 2 .009 

Silica Gel Ar 
(MB) N„ 

CÔ 
CH, 

Columbia 
L 
charcoal 
(MB) 

SK 
charcoal 
(MB) 

Ar 

CH. 

Ar 

c8 
CH4 

C^4 
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Table 11. (Continued) 

Adsorbent _ Az 
and Gas -Er„/R -In AZ , 3\ A St. dev. 
system ^ (mVg) 

Silica 
Gel Run 
(EGC) 

Silica 
Gel Run 
(EGC) 

Ar 

c8 
CH. 

C3H8 

Ar 

4 C2H4 
C2H6 
C3H6 
CoHo 
cBo® 

0^4 

C^6 
C3H6 
CgHg 

Ar 

I SîS 
C3H8 
COo 

Columbia-L CH4 
charcoal (FGC) 

Columbia-L CH. 
charcoal (FGC; 
Injected Samples 

Columbia-
L 
charcoal 
(EGC) 

SK 
charcoal 
(EGC) 

1736 3. 9327 0.01959 73.6 . 284 
2055 4. 5748 .01031 37.0 .167 
1934 4. 0252 .01786 63.3 .19 
2199 4. 1459 .01583 55.7 .07 
2846 3. 9392 .01946 62.0 .02 
2550 3. 6322 .02646 92. 2 .03 
3634 4. 4322 .01189 33.8 .02 
3247 4. 0829 .01686 47.1 .02 

1748 4. 3132 .01339 50.3 .07 
1614 3. 9435 .01938 69.5 .02 
1564 3. 8721 .02081 75.9 .04 
1860 3. 6928 .02490 87.7 .035 
3097 4. 5089 .01101 35.1 .02 
27 88 4. 2117 .01482 51.6 .02 
3785 4. 7573 .00859 24.4 .01 
3340 4. 3635 .01273 35.6 .03 
3031 4. 5799 .01026 32.8 .04 

2627 4. 2617 .01410 46.4 .025 
2800 3. 4625 .03135 101.1 .03 
3570 3. 1541 .04 268 125.5 .008 
3986 3. 5722 .02810 80.9 .02 
4560 3. 2118 .04029 106.6 .025 
4824 3. 5015 .03015 77.7 .008 

2036 3. 1627 .04231 144.9 .02 
2103 3. 2239 .03980 130.9 .013 
2122 3. 3765 .03417 113.9 .03 
2631 3. 1445 .04309 139.0 .02 
3706 3. 3554 .03489 102.6 .009 
3845 3. 2940 .03710 117.4 .028 
4889 3. 6288 .02655 70.2 .005 
5053 3. 7747 .00294 59.1 .005 
3246 3. 6437 .02615 77.4 .026 

2267 2. 0419 .1298 418.7 . 055 

2566 2. 9403 .05285 170.5 .013 
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Tablo 12. Parameters evaluated foi' the two-dimensional gas 
I'ilm model 

Gas E /R EVR o„ oT ( A(m^ g"^) St. dev. 
° (A) (A) 

CHJ 148. 2 128 .3 3 .817 3. 863 .93 204±9 71 .4 
ARB 119. 9 98 .8 3 .40 3. 46 .91 188±10 -

N2 95. 0 78 .4 3 .70 3. 76 .91 270±10 -

CO 100. 2 83 .0 3 .76 3. 82 .91 245±30 -

CH4 148. 2 131 .7 3 .817 3. 855 .94 60±1 83 .7 

C2»4 199. 2 157 .1 4 .523 4. 613 .89 76±3 245 .3 

^2^6 243. 0 170 .1 3 .95 4. 09 .84 43±3 -

C03 189. 0 150 .2 4 .486 4. 573 .89 44±0 5 .7 
Aj.C 119. 9 93 .0 3 .40 3. 48 .88 260±30 -

^2 95. 0 76 .0 3 .70 3. 77 .89 240±5 -

CO 100. 2 82 .7 3 .76 3. 82 .91 276±20 -

CH4 148. 2 148 . 2 3 .82 3. 82 1.00 40±1 -

^Columbia-L charcoal FGC data. 

^SK charcoal MB data. 

^Columbia-L charcoal MB data. 

Table 13. FGC data on Columbia-L charcoal, dependence of gas-
surface virial coefficients on temperature 

Gas T(°K) -C^^gXlO"® Bg/A x 10-2 

(cm3g-l)(cmG mole~^) (g mole~^) 

CH. 223.0 410.0 25.3 .753 
242.3 265.0 16.15 1.15 
273.1 102.5 4.17 1.99 
298.6 51.0 1.16 2.23 
323.5 29.0 .43 2.54 
343.0 20.0 .278 3.48 
363.6 14.4 .149 3.60 
392.0 11.2 .090 5.06 
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Table 13. (Continued) 

Gas T(°K) -C^^gXlO"® BG/A x 10"2 

(cm^g~^)(cm® g~^ mole ^) (g mole"^) 

Injected 298.0 53.9 
samples 323.5 28.2 
CH. 343.0 18.7 

363.6 13.0 

Table 14. MB data on Silica Gel, dependence of V on . . J jr ex 
temperature 

Gas Vjx (cm^/g) T(°K) 

Argon 1.499 273.50 
1.004 301.36 
.737 324.80 
.579 349.04 

Nitrogen 1.680 273.39 
1.094 298.74 
.775 322.80 
.587 346.69 

Carbon 1.995 298.92 
monoxide 1.382 322.13 

1.018 345.41 

Methane 4.322 299.38 
2,752 322.21 
1.852 346.53 
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Table 15. MB data on Columbia-L charcoal, dependence of gas-
surface virial coefficients on temperature 

Gas T(°K) 
C 

(cm^g-l) 

-CAA8=10-4 

(cm6g-lmole-l) 

Bg/AxlO'S 

(g mole"^) 

Ar 273.36 14.132 7.925 1.984 
301.90 8.138 2.431 1.836 
327 . 26 5.498 1.382 2. 286 
350.52 4.002 .845 2.638 

Np 273.28 17.911 18.41 2.869 
299.56 10.540 6.918 3.114 
326.64 6.641 2.780 3.151 
350.33 4.667 1.159 2.662 

CO 273.26 29.373 45.89 2.659 
300.99 15.693 13.06 2.652 
326.74 9.669 4.778 2.555 
349.98 6.665 2. 500 2.814 

CH. 273.36 167.37 2993.0 5.343 
297.66 88.16 7236.0 7.951 
350.33 32.63 345.5 11.53 
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Table 16. MB data on SK charcoal, dependence of gas-surface virial coefficients 
on temperature 

Gas T(°K) 
/ 3 -i\ (cm g ) 

-CAASXIO'^ 

(cm® g~^ mole"^) 

Bg/AxlO-

(g mole" 

2 

1) (cm® g~^ mole"^) 

Ar 273.36 14.893 10.63 2.397 
298.33 8.956 4.615 2.877 
323.57 5.792 
348.69 3.987 

N9 273.31 16.818 14.77 2.611 
298.53 9.849 5.175 2.668 
325.12 6. 242 2.093 2.687 
346.10 4.561 1.193 2.867 

CO 273.28 28.520 48.00 2.950 
300.48 15.183 13.65 2.961 
327.33 9.125 5.175 3.107 
350.68 6.176 2.161 2.833 

CH 273.23 148.21 2553.0 5.810 330.0 
4 302.93 67.73 702.1 7.652 65.6 

326.99 39. 24 258.1 8.378 16.8 
350.28 24.53 112.5 9.352 6.1 

CgH 299.56 1137.57 130.3 5.034 101.1 
(It 323.69 493.06 29.43 6.054 14.0 

343.97 267.02 11.08 7.767 4.7 
362.15 158.70 4.423 8.780 2.2 

CpH 314.04 1190.76 166.0 5.852 765. 
6  D  335.04 581.91 49.16 7. 259 37. 

356.44 316.69 20.18 10.06 15. 

CO» 273.36 524.29 36.38 6.616 25.15 6 299.51 193.88 7.433 9.887 4.94 
325.37 82.71 .978 7.149 . 21 
348.83 44.09 . 237 6.078 .03 
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Table 17. EGC data on Silica Gel, dependence of V° on 
temperature. 

Run No. Gas V°^(cm^/g) T(°K) 

1 Argon 

1 Nitrogen 

1 Carbon 
monoxide 

1 Methane 

1 Ethylene 

1 Ethane 

1 Propylene 

1 Propane 

2 Argon 

0. 286 430.86 
.178 506.67 
.149 530.95 

. 296 430.86 

. 230 459.22 

.160 506.67 

.407 430.86 

. 227 506.67 

. 177 554.79 

.646 430.86 

.436 479.57 

.330 506.66 

.292 530.93 

3.174 430.86 
2.249 458.24 
1.698 479.56 
1.262 506.66 
1.064 530.95 
0.878 554.78 

2.240 430.86 
1.776 458.23 
1.380 479.56 
1.070 506.66 
0.897 530.95 

10.474 430.86 
6. 216 458.22 
4.620 479.55 
3.136 506.66 
2.416 530.94 
1.847 554.79 

6.324 430.86 
4.275 458.22 
3.170 479.55 
2. 232 506.65 
1.741 530.94 
1.430 554.75 

1.035 298.61 
0.504 351.44 
.326 395.57 
. 200 443.62 
.149 494.89 
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Table 17. (Continued) 

Run No. Gas V° (cm^/g) T(°K) 

2 Nitrogen 1.070 298.61 
.529 351.46 
.436 372.11 

2 Oxygen 0.980 298.64 
.516 351.44 
.422 372.13 
.331 395.56 

2 Methane 2.817 298.62 
1.250 351.44 
1.036 372.11 
.778 395.58 
.486 443.62 

2 Ethylene 5. 262 395.53 
3.610 420.72 
2.494 443.67 
1.690 473.54 
. 956 526.24 
.660 561.77 

2 Ethane 3.524 395.54 
1.835 443.66 
1.285 473.52 
.992 494.88 
.756 526.26 

2 Propylene 12.574 420.68 
8.042 443.71 
4.824 473.54 
2.348 526.21 
1.582 561.77 

2 Propane 10.829 395.51 
6.882 420.70 
4.982 443.67 
3.106 473.54 
2.278 494.87 
1.634 526.21 

2 Carbon 6.573 372.12 
dioxide 4. 266 395.56 

3.008 420.76 
2.037 443.61 
1.416 473.49 
1.060 494.89 
.735 526.25 
.590 561.78 
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Table 18. EGC data on Columbia-L charcoal, dependence of 
yo on temperature 
ex 

Gas ^ex (crn^/g) T(°K) 

Nitrogen 1.930 410.87 
1.274 438.53 
.836 478.79 
.480 545.95 

Methane 6.016 410.83 
4.188 438.53 
2.604 478.79 
1.894 515.77 
1.362 545.94 
1.030 579.85 
.916 607.19 

Ethylene 28.177 438.52 
14.808 478.78 
9.098 515.76 
4.658 579.84 
3.618 607.19 
2.593 649.78 
1.857 699.15 

Ethane 12.280 515.75 
8.644 545.91 
5.933 579.84 
4.368 607.19 
3.021 649.76 
2.002 699.12 

Propylene 32.337 545.90 
20.417 579.84 
9.124 649.76 
6.197 699.11 

Propane 37 .535 545.90 
23.382 579.83 
16.436 607.16 
10.112 649.75 
6.398 699.10 
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Table 19. EGC data on SK charcoal, dependence of V° on 
temperature 

Gas V° (cm^/g) T(°K) 

Argon 7.398 304.10 
3.380 351.35 
2.309 377.67 
1.673 408.76 
1.297 434.70 
1.065 462.52 
.820 490.52 
.576 553.02 

Nitrogen 8.490 304.07 
3.756 351.33 
2.575 377.71 
1.761 408.76 
1.397 434.74 
1.085 462.09 

Oxygen 7.549 304.10 
3.478 351.34 
2.324 377.69 
1.621 408.76 
1.190 434.72 

Methane 15.375 351.35 
9.674 377.71 
6.098 408.76 
4.386 434.72 
2.254 490.51 
1.392 553.05 
1.105 590.75 

Ethylene 20.088 462.64 
13.433 490.50 
6.190 553.04 
3.301 616.66 

Ethane 28.432 462.07 
18.233 490.50 
8.366 553.04 
5.731 590.78 
4.312 616.67 
3.369 640.64 
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Table 19. (Continued) 

Gas V° (cm^/g) T(°K) 

Propylene 33.047 553.04 
19.780 590.78 
14.232 616.62 
10.874 640.56 
8.417 664.99 

Propane 37.720 553.05 
21.968 590.78 
15.692 616.64 
11,967 640.58 
9.077 665.00 

Carbon 9.080 434.72 
dioxide 6.278 462,07 

4.382 490.51 
3.459 506.25 

Table 20. Gravimetric adsorption isotherms on Silica Gel 

Gas Temperature Amount Pressure 
(°K) adsorbed (mm) 

(mg/g) 

Nitrogen 273.39 

298.74 

322.80 

0.0411 14.834 
.1936 69.840 
.3656 131.652 
.4764 171.585 
.5937 214.045 
.7019 252.870 
.8193 295.683 

.0263 16.187 

.0850 51.774 

.1229 75.058 

.1685 102.949 

.2377 144.341 

.3016 183.109 

.3708 225.192 

.4661 285.846 

.0386 35.330 

.0569 53.344 

.0804 75.404 
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Table 20. (Continued) 

Gas Temperature Amount Pressure 
(°K) adsorbed (mm) 

(mg/g) 

0.1117 103.566 
.2004 184.086 
.3074 286.318 

346.69 .0128 17.572 
.0389 51.156 
.0637 83.531 
.0963 126.862 
.2151 286.240 

Argon 273.49 .0507 14.675 
.1080 30.410 
.1810 51.693 
.2475 70.490 
.3165 90.529 
.4508 128.145 
.6006 171.691 

301.37 .0216 10.302 
.0425 18.969 
.0725 32.534 
.1182 53.433 
.1586 72.835 

324.80 .0899 62.385 
.1329 90.951 
.3104 213.382 
.3665 252.891 

349.04 .370 34.935 
.0670 63.340 
.0957 89.903 
.1388 131.015 
.1831 171.663 
.2236 211.506 

Carbon 298.92 .1024 34.435 
monoxide .1663 55.738 

.2512 84.820 

.4788 162.987 

.5957 204.893 

.7314 252.663 

322.13 .0315 16.362 
.0680 35.419 
.1045 54.876 
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Table 20. (Continued) 

Gas Temperature Amount Pressure 
(°K) adsorbed (mm) 

(mg/g) 

0.1502 78.488 
.2076 109.639 
.2729 143.619 
.3446 183.748 
.4230 225.871 

345.41 .0747 56.344 
.1048 80.656 
.1426 108.944 
.1870 144.223 
.2418 185.560 
.2927 227.923 
.3579 279.807 

Methane 299.38 .0584 15.869 
.1928 53.421 
.2646 74.164 
.3376 96.050 
.5790 171.980 

322.21 .0333 15.005 
.0737 34.548 
.1181 54.714 
.2081 98.545 
.2982 143.578 
.5017 253.741 

346.53 .0222 16.166 
,0770 56.482 
.1110 81.577 
.2206 163.757 
.3772 284.736 
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Table 21. Gravimetric adsorption isotherms on Columbia-L 
charcoal 

Gas Temperature Amount Pressure 
(°K) adsorbed (mm) 

(mg/g) 

273.36 0.4938 15.017 
1.8208 55.970 
2.7356 84.933 
3.9339 123.853 
5.1321 163.862 
6.5751 213.496 

301.90 0.2675 15.490 
0.5561 32.416 
0.9323 54.462 
1.4425 84.779 
2.0919 123.447 
4.6119 279.474 
5.4236 331.545 

327.26 0.1649 15.351 
0.5772 53.966 
0.8864 83.279 
1.7367 164.624 
2.5613 245.323 
3.1024 299.578 
3.5765 346.999 

350.52 0.2293 31.411 
0.4071 55.938 
0.6081 83.869 
0.8967 124.068 
1.4738 205.564 
2.1979 309.634 
2.6102 370.137 

273.28 0.4520 15.510 
0.8775 30.349 
1.6602 58.422 
2.3977 85.921 
3.3738 123.825 

299.56 0.2285 14.557 
0.4966 31.720 
0.8937 57.771 
1.8787 124.174 
2.4511 164.710 
3.1885 218.473 

Argon 

Nitrogen 
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Table 21. (Continued) 

Gas Temperature Amount Pressure 
(°K) adsorbed (mm) 

(mg/g) 

326.64 

350.33 

Carbon 
monoxide 

273 . 26 

300.99 

326.74 

349.98 

Methane 273.36 

0. 3218 35. 497 
1. 5851 180, 220 
2. 3018 266. 633 

0. 1932 32. 408 
0. 3531 59. 223 
0. 5180 87. 595 
0. 7423 126. 098 
0. 987 2 168. 103 
1. 24 24 212.483 
1. 9771 343. 912 

0. 7010 14. 659 
1. 4612 31. 289 
2. 5951 56. 649 
3. 7290 83. 560 
5. 2623 122. 874 

1. 2601 55. 157 
2. 7159 122. 635 
3. 5662 164. 254 
4. 3650 205. 023 

0. 1779 13. 4 20 
1. 5847 122, 858 
3. 0689 245. 632 
3. 5481 286. 753 
4. 0325 329. 755 

0. 1174 13. 771 
0. 2566 30. 129 
0. 4575 53. 978 
0. 7049 83, 572 
1. 3696 164. 653 

0. 8706 5. 866 
1. 3217 9. 193 
2. 2939 17. 091 
2. 8616 22. 146 
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Table 21. (Continued) 

Gas Temperature Amount Pressure 
(°K) adsorbed (mm) 

(mg/g) 

297.65 

350.33 

0.4959 
1.0559 
1.3943 
1.7405 
2.1566 

0.1177 
0.2304 
0.3490 
0.4851 
0.6523 
0.8369 
1.0275 

6.841 
15.372 
21.009 
26.946 
34.410 

5.002 
9.931 
15.351 
21.698 
30.153 
39.663 
50.355 

Table 22. Gravimetric adsorption isotherms on SK charcoal 

Gas Temperature Amount Pressure 
(°K) adsorbed (mm) 

(mg/g) 

Argon 273.36 

298.33 

323.57 

348.69 

0.4581 
1.0487 
2.1043 
3.3743 

0.2721 
0.6326 
1.2490 
3.4744 
4.2736 

0.2629 
0.4797 
0.8480 
1.3207 

0.0714 
0.5088 
0.8587 
1.2426 
1.2922 

13.212 
30.406 
61.922 
100.942 

14.178 
33.214 
66.198 
190.626 
237.954 

23.074 
42. 278 
75.412 
118.777 

9.756 
69.604 
117.900 
170.363 
177.989 
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Table 22. (Continued) 

Gas Temperature Amount Pressure 
(°K) adsorbed (mm) 

(mg/g) 

Nitrogen 273.31 

298.53 

325.12 

346.10 

Carbon 
monoxide 

273. 28 

300.48 

327.33 

350.69 

0. 5576 20. 390 
1. 9156 71. 917 
2. 4840 94. 502 
3. 2051 123. 821 

1. 0441 71. 819 
1. 4231 98. 951 
1. 8915 132. 508 
2. 4441 173. 308 
2. 9809 214. 098 

0. 4363 50. 953 
0. 6639 78. 078 
1. 7113 205. 422 
2. 0534 248. 179 
2. 4218 295. 304 

0. 1954 33. 063 
0. 2993 50. 936 
0. 9295 160. 176 
1. 1887 205. 939 
1. 4807 257. 817 
1. 7017 298. 423 

0. 7545 16. 346 
2. 1515 48. 253 
2. 9303 66. 877 
5. 2534 128. 335 

0. 6809 30. 446 
1. 1229 50. 709 
1. 5438 70. 380 
2. 1357 98. 793 
2. 8460 134. 006 

0. 1005 8. 056 
0. 2005 16. 093 
0. 3649 29. 380 
1. 1607 95. 112 
1. 5842 131. 392 
2. 7127 231. 516 

0. 1322 16. 822 
0. 2361 29. 901 
0. 3808 48. 558 
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Table 22. (Continued) 

Gas Temperature Amount Pressure 
(°K) adsorbed (mm) 

(mg/g) 

Methane 273.23 

302.93 

326.99 

350.28 

Ethylene 299.56 

0. 5281 67. 409 
1. 3816 179. 963 
2. 1995 291. 539 
2. 5257 337. 571 

0. 6522 4. 953 
1. 3385 10. 571 
2. 0591 17. 462 
3. 2740 31. 069 
4. 5626 47. 944 
6, 0089 69. 238 
7. 6236 96. 842 
9. 0594 122. 732 
11. 0843 165. 777 
12.8278 206. 582 
14. 5108 249. 880 
16. 3395 301. 326 

0. 9073 17. 201 
1. 4148 28. 533 
2. 1538 46. 435 
3. 0689 71. 234 
4. 0051 98. 772 
4. 9781 128. 863 
6. 1194 167. 973 
6. 9610 198. 419 

0. 4431 14. 985 
0. 7245 25. 452 
1. 7291 67. 296 
2. 4259 100. 141 
3. 1360 135. 309 
3. 9407 178. 669 
4. 8006 225. 005 

0. 7100 42. 941 
1. 0965 69. 003 
1. 5331 101. 37 2 
2. 0774 141. 931 
2. 6033 183. 052 
3. 3869 245. 897 

6. 1057 4. 671 
9. 1809 8. 374 
12. 2430 12. 947 
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Table 22. (Continued) 

Gas Temperature 
(°K) 

Amount Pressure 
adsorbed (mm) 
(mg/g) 

15. 1080 18. 105 
19. 3922 27, 748 
22. 4148 35. 899 
25. 2141 44. 385 
28. 7230 57. 092 
31. 6273 68. 934 
34. 1374 80. 699 
37. 0287 94. 957 
40. 3667 114. 070 
45. 9520 151. 105 

3. 5820 6. 209 
5. 8484 11. 476 
7. 5496 16. 227 
9. 3881 21. 889 
11. 7074 30. 210 
13. 4984 37. 409 
15. 9234 48. 582 
18. 8026 63. 503 
22. 6276 86. 754 
25. 7182 108. 900 
28. 6504 132. 411 
31. 6221 159. 046 
34. 6071 189. 959 

1. 4369 4. 467 
2. 7100 9. 055 
4. 0042 14. 512 
4. 7950 22. 903 
7. 7918 33. 816 
9. 8943 46. 785 
12. 1499 62. 674 
14. 1784 78. 448 
16. 7933 97. 358 
18. 6765 119. 979 
21. 5159 150. 692 
24. 5005 187. 134 
27. 9870 237. 152 

0. 9164 4. 916 
1. 6612 9. 299 
2. 6120 15. 376 
3. 9748 25. 094 
6. 0163 41. 570 

323.69 

343.97 

362.15 
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Table 22. (Continued) 

Gas Temperature Amount Pressure 
(°K) adsorbed (mm) 

(mg/g) 

Ethane 292.06 

314.04 

355.47 

7. 7699 57, 824 
9. 1644 71. 701 
11. 1504 93. 495 
13. 0784 117. 222 
15. 0750 144. 556 
17. 5760 185. 507 
21. 4452 252. 716 

10. 7746 3. 957 
16. 8881 8. 264 
21. 6019 12. 825 
26. 67 23 19. 063 
31. 3994 26. 437 
36. 5226 36. 225 
42. 8869 51. 538 
48. 8288 68. 982 
53. 1201 84. 299 
56. 487 2 97. 513 
60. 6201 116. 129 
65. 4396 141. 290 
71. 8172 180. 663 

5. 5583 3. 941 
9. 5058 8. 480 
13. 4930 14. 406 
16. 4240 19. 625 
20. 7148 29. 221 
24. 2663 38. 678 
27. 9498 50. 091 
32. 0030 65. 206 
35. 6997 80. 979 
39. 0003 96. 846 
43. 9777 125. 392 
48. 6778 156. 322 
53. 6551 195. 460 

3. 23 20 4. 582 
5. 6929 9. 291 
8. 0324 14. 793 
10. 3983 21. 185 
12. 6163 28. 106 
14. 9400 36. 343 
16. 9520 44. 308 
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Table 22. (Continued) 

Gas Temperature Amount Pressure 
(°K) adsorbed (mm) 

(mg/g) 

356.44 

Carbon 273.36 
dioxide 

299.51 

20. 6065 61. 032 
24. 1447 80. 126 
27. 2341 99. 386 
30. 8516 124. 868 
34. 8652 158. 284 

1. 7479 4. 598 
3. 7017 11. 040 
5. 9407 19. 714 
7. 8206 28. 293 
9. 8008 38. 377 
11. 7230 49. 534 
13. 3177 59. 316 
15. 3930 73. 819 
16. 8663 84. 763 
18. 8607 101. 417 
19. 9607 110. 553 
22. 9126 138. 476 
25. 5476 166. 633 
28. 7292 204. 506 

5. 4603 4. 806 
9. 1409 9. 055 
12. 7820 13. 958 
17. 7902 21. 747 
23. 1401 31. 313 
29. 5942 44. 885 
36. 7581 62. 145 
42. 0161 76. 306 
48. 3913 95. 104 
54. 5694 115. 577 
63. 9942 150. 801 
73. 0641 188. 941 
82. 1341 231. 316 
90. 7571 276. 029 

2. 2029 5. 299 
3. 8748 9. 903 
6. 0620 16. 476 
8. 3437 24. 088 
11. 3721 34. 937 
14. 3164 46. 687 
18. 0887 63. 385 
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Table 22. (Continued) 

Gas Temperature 
( °K )  

Amount 
adsorbed 
(mg/g) 

Pressure 
(mm) 

20. 9277 76. 944 
24. 5291 95. 104 
28. 2752 115. 581 
32. 8887 143. 221 
38. 0543 176. 727 
43. 2067 213. 398 
48. 5431 254. 246 
53. 5509 296. 341 

0. 9989 5. 748 
4. 7314 30. 328 
6. 4405 42. 705 
8. 1965 56. 348 
10. 0261 71. 258 
12. 3920 91. 768 
14. 5003 110. 975 
16. 8924 134. 225 
20. 3046 169. 362 
23. 5906 205. 902 
27. 1263 247. 369 
30. 6094 290. 469 
33. 9217 334. 44 2 

1. 1224 12. 960 
1. 8164 21. 352 
3. 6985 45. 235 
5. 1075 64. 084 
6. 4901 83. 255 
8. 3933 111. 747 
10. 5698 145. 375 
12. 7779 181. 831 
15. 1331 222. 612 
16. 7839 252. 252 
18. 8396 290. 685 

325.37 

348.83 
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APPENDIX C: COMPUTER PROGRAMS 
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PROGRAM 1  PROGRAM I  PROGRAM 1  PROGRAM 1  

PROGRAM FOR PROCESSING OF  GAS CHROMATOGRAPHIC  DATA  TO OBTA IN  

BAS  i  ZERO EXCESS VOLUME )  VS .  TEMP.  

D IMENSION T5 (20 ) tVR i20 )  
WRITE  ( 3 , 16 )  
READ ( 1 , 2 )  SW 

SH  
READ ( 1 , 1 )  N  

N  
DO 13  I =1 ,N  
READ ( 1 , 1 )  N1 ,NX ,RP ,ADP,VP  

THE F IRST  DATA CARD OR CARDS FOR A  G IVEN SET  OF  GASES/TEMP.  MUST  
BE  THE DATA  FOR A  NONADSORBED GAS SUCH AS  NEON.  

N l  =  NO.  PTS . /GAS /TEMP. ,  NX  =  NO.  GASES/TEMP. ,  BP  =  BARROMETRIC  P  
ADP =  PRESSURE DROP (MM) ,  VP  =  VAPOR P  SOAP SOL .  (MM)  

P I=8P+ADP 
P0=8P-VP  
PM«(P I+P0 ) / 2 .0  
DP=P I -PO 
XX=P0# (1 .0 -0 .0633# ( (DP /PM) *#2 ) ) /PM 
DO 12  J ' l fNX  
DO 7  K=1 ,N1  
READ ( 1 , 4 )  R ,F1 ,T1 ,D , ID I  

R  -  RESISTANCE OF  PT  RES IS .  THERMOMETER,  F1  =  FLOW T IME (SEC) ,  
T l  «  TEMP FLOWMETER (DEG C ) ,  D  «  RETENTION D ISTANCE (CM) ,  
ID I  =  GAS IDENT IF ICAT ION NO.  

r 2= (48 .712 ' 60 .0 ) /F l  
48 .712  IS  CAL IBRATED VOL .  OF  FLOWMETER ICC  

T? *T1+273 .16  
TR= l ) / 2 . 54  

DETERMINE  TEMPERATURE OF  PT  RES IS .  THERMOMETER 

T3 - (R -25 .5542 ) / ( 0 . 0039261«25 .5542 )  
T4«T3  
T5 (K )=T3+ l . 4916* (T4 /100 .0 -1 .0 )» |T4 /100 .0 )  
I F (ABS(T5 (K ) -T4 ) -U0E-3 )  15 ,6 ,6  
I 4=T5 (K )  
GO TO 5  
T5 (K )=T5 IK )+273 .16  
V%(K) *F2«TR»r5 (K ) *XX /T2  
AV 'O .O  
AT=0 .0  
D(J  B  K» l ,N l  
AV=VR(K )+AV  
AT"T5 (K )+AT  
A -N l  

=  SAMPLE WT.  

=  NO.  OF  TEMPS.  
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9  AV«AV/ *  
AT=AT /A 
I FU -1 )10 ,10 ,11  

10  VZ -AV /SW 
WRITE (3 ,17 )  VZ .AT  

C  
C  V2  =  APPARENT VOLUME OF  NONADSORBED GAS 
C  

GO TO 12  
11  VG=AV/SW-VZ  

VFxALOG(VG)  
T6 -SQRT(AT)  
V1=VG«(1 .0 /T6 )  
V2=AL0G(V1 I  
T7 -1000 .0 /AT  
WRITE (3 ,3 )  VG,VF ,V2 ,AT ,T7 , ID I  

C  
C  VG =  BAS  OR ZERO EXCESS VOLUME 
C  ALL  OUTPUT QUANTIT IES  ARE PER GRAM ADSORBENT 
C  

12  CONTINUE 
13  CONTINUE 
1  FQRMAT(2U0 ,3F10 .0»  
2  FORMATIF IO .O)  
3  F0RMAT(5XSF20 .4 ,110 I  
4  FORMATI1E15 .6 ,3E12 .4 ,110 )  

16  F0RMAT(a iS ,5Xa  BAS LN IBAS)  LN IBAS I  
l T ) - l / 2 )  T  lOEG K )  1000 /T  1013 / / )  

17  FORMAT( / / 5XF20 .4 ,40XF20 .4 )  
STOP 
END 
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PROGRAM 2  PROGRAM 2  PROGRAM 2  PROGRAM 2  

PROGRAM FOR PROCESSING MICROBALANCE DATA  TO OBTA IN  

GAS-SURFACE V IR IAL  COEFF IC IENTS AND 

HENRVSS LAW PARAMETERS 

D IMENSION D I20 ) ,P (20 ) .AM(20 ) ,R I20 ) .GAGE(20 ) ,GLAB I5 ) ,WI20 ) ,WAI20 ) .  
IRNA(20 ) ,VA I20 ) .TS (20 )  t TT (20 l ,  BAS  I  S ) ,  CAAS I  4  )  .  VAU 20 ) .  BSA  (  S  )  ,  
2SABI5 ) ,SUBA(20 ) ,SUBBI20 ) ,T l ( l l ) tPU l l ) , T (20 ) ,P213 ,9 ) ,NP I3 ) ,RWI20 ) ,  
3VX I20 I ,VCA(20 ) ,DATLAB(5 )  

COMMON PRESSI20 ) , LX I20 ) ,COt4 ,5 ) ,KPTS |4 ,5 ) , LPTS I4 ) , IT .MX  
COMMON Z I20 ) tM l ,H2 ,NX ,ALPHA(20 l ,M6 ,SMI9 )  
REAL 'S  Q12 )  

1  F0RMAT(4 I5 )  
2  FURMATI20A4 I  
4  FORMAT! I10 ,3F10 .0 )  
5  FORMATI I10 tF10 .0 ,5A4 )  
1  FORMATtF10 .3 t2F lO .O ,2F I0 .3 )  
B  F0RMAT la i a ,40X l0A4 / / / / )  
9  F0RMAT ( 4 5 X a S A M P L E  HT.  = 3 , F  10 . 4 ,SMG. S / / )  

10  FORHAT ( / / / 1 2 X 1 8 H W T .  ADSORBED IMG.  )  ,  2 X 1 8 H V 0 L .  ADSORBED ICOtSX l f cHR.  
I N A  ( C C « M M / D E G ) , 4 X a P R E S S U R E  ( H M ) 3 , 4 X 3 P T .  = 3 / / )  

11  F0RMAT(5XF20 .4 ,3F20 .3 ,H0 )  
12  FDRHATI4X2F20 .3 ,2E20 .4 ,F20 .3 ,112 )  
15  r nRHAT( / / / / l l X3BAS >3 ,F  10 .4 ,9XaCAAS/RT  =3 ,E12 .4 ,lOXaCAAS =3 ,E12 .4 /  

I / )  
16  F0RMATI3SX9HCAAS/RT  = ,E12 .4 , lOXÔHCAAS = ,E12 •4 ,1CX7H0AAAS = ,E12 .4 )  
17  FORMATIaOa t lOXTHRAT lO  = ,F  10 .4 ,10X382 /A  =3 ,E15 .4 / / / / / / / / )  
31  F0RMAT(8F10 .0 )  
33  FORMATI15 ,F IO .O)  
40  FORMAT( / / a  VA  EXP  VA  CALC IVA -BA  

1S ) /P  EXP <VA-BAS) /P  CALC PRESSURE PT .  =3 / / )  
45  FORMAT(4E20 .8 )  
60  F0RMATI3TEMP.  =  3 ,F6 .2 ,3  DEC K3 )  

110  F0RMATI / / 40X3  POINTS  EL IM INATED FROM ABOVE SET  ARE NOS.S ,515 / / )  
120  F0RMATI40X3  BEST  F IT  OF  VA  VS .  P  G IVEN BY  DEGREE =3 ,15 )  
130  F0RMATI / / 40X3  BEST  F IT  OF  IVA -BAS) /P  VS .  P  G IVEN BY  DEGREE >3 ,15 )  
140  F0RMATI40X3  BEST  F IT  OF  WA VS .  P  G IVEN BY  DECREE =3 ,15 )  

30  F0RMATI20X8H-E IX0 )  = ,F  10 .2 ,10X9HLN(S /0 )  = ,F  10 .4 ,10X5HAZ0  = ,E12 .4 ,  
110X7HSTDEV = ,F10 .5 / / )  

169  FORMAK/Z lOxa  BAS  LN I  BAS  (  T  ) - 1 / 2  )  EXP  LN lBAS t  
l T ) - l / 2 )  CALC 1000 /T  T  DEC KB / / )  

170  FORHATI i aX3F20 .4 ,2F20 .3 )  
OU 3  1=1 ,20  

3  H In  =1 .0  
C  
C  INPUT  PRESSURE GAGE AND TC  CAL IBRAT IONS 
C SEE  TABLE  3  FOR THE POLYNOMINAL  COEFF IC IENTS 
C 

REAUI l , ! )  NTEMP, INP I I ) , 1=1 ,3 )  
READ 11 ,31 )  ( T i l I ) . I  =  1 ,NTEMP)  
00  3  5  1=1 ,3  
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N3«NPCI )  
READ; I ,45 )  (P2 ( I , J ) , J=1 ,N3)  

35  CONTINUE 
READ(1 ,4 )  NSETS 
00  1000  NS*1 ,NSETS 
READ(1 ,4 )  N l ,S ,E ,e  
READ( l»n L8»N5FM9 

NSETS «  NO.  OF SEPARATE SETS TO BE PROCESSED AT  ONE T IME 
NL  =  NO.  OF GASES/SET WITH SAME SET UP PARAMETERS (S ,E ,B , )  
L8  *  MAX DEGREE OF POLYNOMIAL  USED TO F IT  WA VS .  P  DATA 
M9 »  0  IF  WA VS .  P  DATA IS  NOT TO BE CORRECTED 
M9 «  1  IF  WA VS .  P  DATA IS  TO BE CORRECTED 
N5 *  NO.  OF DATA PTS.  TO BE USED IF  M9 «  0  

TU=0 .0  
NDEG=1  
DO 99  J« I ,N I  
M8 -L8  
READ( I , 5 )  N2 ,AM0L , (GLAB( I ) , I =1 ,5 )  

C  
C  N2  «  NO.  TEMPS/GAS,  AMOL  =  MOL .  WT .  (MG) ,  GLAB  »  DATA  LABLE  
C  

DO 100  1=1 ,N2  
JX=0  
READ( l , 33 )N .TT ( I )  

C  
C  N  =  NO.  PTS . /TEMP/GAS.  TT  «  TEMP.  lEMF  OF  TC  IN  MV )  
C  

HE  An (1 ,7 )  (O IK ) ,AM(K ) ,R IK ) ,GAGE(K ) ,P (K ) ,K=1 ,N )  
C 
C SEE  RESULTS  SECT ION FOR NOTAT IONS t GAGE »  PRESSURE GAGE READINGS 
C 

WO=<OI1 ) -B ) *AM(1 )+P (1 ) *R (1 )  
TSU>  =  TML)  
DO 4  7  K=2 ,NTEMP 

4  7  TS ( I 1=TS I I )+T1 (K )#TT ( I ) * * IK -1 )  
TS I I )  =  TS I11+273 .16  
SW=S-E+WO 
«R*6 .2358E4  
PRESS(1 )=0 .0  
WAI l ) =0 .0  
RWd )=0 .0  
RNA(  n«o .o  
LX (1 )=1  
VA(1 )=0 .0  
DO 97  K=2 ,N  
IFCGAGE(K)-40.1541101t101,102 

101  NPRE SS*NP(1 )  
N4 =  l  
GO TO 105  

102  IF  t o  AGE(K )~ l31 .807 )  103 ,  103 ,  104  
103  NPRESS=NP(2 )  

N4=2  
GO TO 105  

104  NPRESS=NP(3 )  
N4  =  3  

105  CONTINUE 
DO 106  L=1 ,NPRESS 

106  P I  I L  )  =  P2 IN4 ,L )  
PRESSIK )=P l ( l )  
nn  79  L=2 ,NPRESS 

79  PRESS(K )=PRESS4K)+P1 (L ) "GAGE(K1#* (L -1 )  
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WACK) -< (<0<K) -B )#AM(K)+P(K )#R<K j ) -WO) / (SW/1000 .0 )  
RW<K) "RR#WA(K)  
RNA(K )«RW(K) /AMOL  
LX IK } *K  

97  VA(K )«RNA|K )»TS<  D /PRESS iK )  
W R t T E (12»60 )  rS ( I )  
BACKSPACE 12  
READ 412 ,2 )  (DATLAB(K ) ,K=1 ,5 )  
BACKSPACE 12  

C  
C  D ISK  OR TAPE STORAGE MUST BE  PROVIDED AT  RUN T IMC 
C  

WRITE !3 t8 ) (GLAB(K ) ,K=1 ,5 ) , (DATLAB(K ) ,K=1 ,5 )  
WRITE  ( 3 , 9 )  SW 
WRITE I3 ,10 )  
WRITE  ( 3 , 11 )  (WA(K ) ,VA(K ) ,RNAIK ) ,PRESS IK ) , LX (K ) ,K  =  1 ,N )  

C  
C  ALL  OUTPUT QUANTIT IES  ARE PER GRAM ADSORBFNT 
C  

SFWA«PRESS(2 ) /WA(2 )  
00  200  K»2 fN  

200  WA(K ) *WA(K )#SFWA 
OU 207  K=1 ,N  

287  ALPHA(K )»O .OO l»SFWA 
DO 300  K=1 ,N  

300  Z (K ) *1 .0  
LL=0  
IF (M9 )  155 ,156 ,155  

156  DWAO«0 .0  
1F (N5 )831 ,832 ,831  

831  N -N5  
832  M6=3  

MX=0  
LL« -1  
GO TO 134  

155  M1=M8-1  
IF IML-1 )  1002 ,1001 ,1001  

1002  ML=L  
GO TO 1003  

1001  M l»2  
1003  M2=M1 

M6=2  
M7 =  5  
MX=0  
NX =  L  

C  
C  DETERMINE AN APPROXIMATE CORRECTION FOR WA vS .  P  HATA 
C  

CALL  C0RR(M7,WA)  
DWAO=CO( (T ,L )  
:F (ABS(DWA0) -1 .0 )142 ,143 ,14  3  

143  nWA=-0 .1«DWAO 
r . l l  TO  144  

142  l )WA=-0 .  I  
144  CONTINUE 

IF IN -12 )133 ,133 ,11?  

r .O  TO  134  
132  M6*5  
134  CONÎ INUE 

M l  =MW 
M2%Ml  
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c  
C  I F  M2  IS  SET  TO A  VALUE LESS THAN M l  THEN THE PROGRAM WILL  DETERMINE  
C  WHICH DEGREE BEST  F ITS  THE DAT* .  
C  

NX-0  
HN«0  
MX» I  

C  I F  MX -  0  M6-1  PTS .  WILL  BE  EL IM INATED IF  ERROR L IM ITS  SET  UP  ARE 
C  NOT MET .  
C  I F  MX «  1  0  PTS  WILL  BE  EL IM INATED.  

DETERMINE  BEST  CORRECTION FOR WA VS .  P  DATA  

Z (  U -1 .0E6  
WAd l ' l .O  
PRESSI11=1 .0  
DO 900  K=2 ,N  "  

900  WA<K)= IWA(K ) -DWAO) /SFWA 
SFWA-PRESSt2 ) /WA(2 )  
DO 901  K ' 2 .N  
PReSS(K I=PRESS(K )+1 .0  

901  WA<K)»WAtK )«SFWA+ l . 0  
DO 700  K=2»N  

700  Z»K)= lPRESS(N)cWAIN) ) / (PRESS(K )«WAIK ) )  
701  CONTINUE 
602  CONTINUE 

CALL  CORRIN .WAI  
GO TO 601  

60S  IF IC0 I IT ,4 I ) 600 ,600 ,601  
600  N 'N - l  

GO TO 602  
601  IF ILL I  807 ,807 ,704  
807  N7«LPTS I IT )  

WRITE(3 , I I 0 )  IKPTS I IT ,K ) ,K=1 ,N7 )  
WRITE  13 ,1401  IT  
WRITE I3 ,10 )  
00  111  L=1 ,N7  
K1=KPTSI IT ,L I  
I F lK l ) 115 ,n i , 115  

115  CONTINUE 
DO 112  K=1 ,N  
IF<LX(K ) -K1 )112 ,112 ,113  

113  IX IK -1 )=LX(K )  
HA IK - l ) =WAtK )  
PRESSIK -D^PRESSIK )  

112  CONTINUE 
N  =  N - l  

111  CONTINUE 
IF  I LL )  707 ,703 ,704  

703  LL=1  
MX-3  
M1  =  I  T 
MZ 'M l  

70b  SM1=SM( IT )  
DO 902  K»2 ,N  

902  WA(K )»WAIK )+DWA 
HN=MN»1  
IF IMN-301701 ,709 ,709  
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704  IF (SM( IT ) -SM1)705 ,706 ,706  
706  1F (ABS(DWA) -0 .01 )707 ,708 ,708  
708  DWA=-0WA/2 .0  

GO TO 705  
709  WR;TE(3 ,710 )  
710  FORMAT i / / a  MO UNDETERMINED 3 / / )  
707  CONTINUE 

PRES5(1 ) "0 .0  
DO 150  K=2 ,N  
PRESS(K )=PRESS<K) -1 .0  

150  WA(K )« (WA<K) -1 .0 ) /SFWA 
DO 114  K=2 ,N  
RNAIK )«RR»WA(K) /AMOL  
VACK)«RNAIK ) *TS( I ) /PRESStK )  

114  CONTINUE 
N8« IR+1  
WA( l )=C0 ( IT , l ) - 1 . 0  
DU 5  90  K»2 ,N f l  

590  WAt I )=WA( I ) •C0 ( IT ,K )  
HA< I ) *WA( I I /SFWA 
WRITE  13 ,11 )  (WA(K ) ,VA(K1 ,RNA(K ) ,PRESSIK ) , LX (K ) ,K=1 ,N )  
on  5  1  K=2 ,N  
VA(K -1 )=VA(K )  
PRESS(K -1 ) "PRESS(K )  

51  IX (K-1 )=LX(K)  
N«N-  I  
SHIF  T1  =  0 . 0  
SFVA =  l .O  
DU 201  K«1 ,N  

201  VA<K)=<VA(K ) -SH IFT1 )#SFVA 
RS 'RR*TS( I )  
DO 400  K=1 ,N  
ALPHA(K )=0 .001»RS/ (PRESS!K ) •AMOL)  

400  Z iK )=PRESS(K ) /PRESS( l )  
Ml-»Ml- l  
I F (M l )  1005 ,1005 ,1006  

1005  M l= l  
1006  M2«M1  

M6  =  4  
MX»3  
NX^O 

C 
C DETERMINAT ION OF  BAS  AND CAAS 
C  

CALL  CORRIN .VA)  
CAAS(1 )=C0 ( IT ,2 ) /SFVA  

I ) »C0<  IT , l ) /SFVA fSH IFT l  
N7=LPTS( IT )  
WRITE !3 ,110 )  ;KPTS( IT ,K ) ,K=1 ,N7 )  
WR i r k  ( 3 , 120 )  I T  
on  121  L«1 ,N7  
K lTKPTS( IT ,L  Ï  
IP (K i ) 125 ,121 ,125  

125  CONTINUE 
no  127  K=1 ,N  
I f  ( l .X (K ) -K l  )  122 ,122 ,123  

123  LX |K -1 )=LX(K )  
VA(K-11=VA(K)  
PRE:SSIK- I ) -PRESS(K)  
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122  CONTINUE 
N 'N -1  

121 continue 
N8- I  T t l  
DO 196  K«1 ,N  
VX IK ) .C0 I IT ,1 )  
no  197  L ' 2 ,N8  

197  VX tK )=VX IK )+CO( IT ,L )»PRESSIK I»# IL - l )  
196  VX(K ) -VX(K1 /SFV*+SHIFT I  

DO 95  K= l ,N  
VA IK )=VA tK ) /SFVA+SHIFT l  

95  VAUK)« IVA tK)-BASm ) /PRESSIK )  
SH IF  T2 "0 .0  
SFva l=1 .0E3  
DO 202  K«1 ,N  

202  V41 IK )« IVA1 IK ) -5H IFT2 )»SFVAI  
DO 800  K=1 ,N  

moo  Z (K )= (PRESSIN)«PRESSIK ) ) / IPRESSI1 )«PRESSI  1 )  )  
MX '3  
Hl =  l  
H2-M2-1  
IF(M2)8l,8l,a2 

81  M2 ' l  
82  CONTINUE 

C 
C DETERMINAT ION OF  CAAS AND DAAAS,  ETC .  
C 

CALL  C0RR(N ,VA1 I  
WR1TE I3 ,130 )  I T  
WRITE  13 ,40 )  
CAASI3 )=CAASI l l «RR«TS t I )  
CAASt2 )»C01 IT ,1 ) /SFVA I *SH1FT2  
CAAS(4 )=CAASI2 )«RS  
OAAAS=COt IT ,2 )»RS»RS/SFVA l  
RAT I0 .CAASI3 I /CAASI4 I  
R2 'CAAS(4 ) / ( 2 . 0 *BAS(  I  KBASI  11  )  
R2=-B2 

1*1  
DO 27  K=1 ,N  
VA l (K )=VA ltKl /SFVA l*SHlFIZ 
VCA(K )=C0 ( IT .1 )  
on  157  L=2 ,N8  

157  VCA |K )=VCAIK I+COt  I T  , L  )»PRESSIK )  • • ( L-n 
VCAIK )=VCAIK I /SFVA1»SHIFT2  
WRITE  I  3 ,12 )  VA<K) ,VX IK ) ,VAUK) ,VCAIK ) .PRESS IK ) , LX IK  )  

2  7  CONTINUE 
IF  I JX )13 .14 ,13  

14  JX=1  
13  CONTINUE 

WRITE !  3 .  IS )  f iAS (n .CAASI l ) ,CAAS l3 )  
WRITE(3 ,16 )  CAASI2 ) .CAASI4 ) ,DAAAS 
WRITE  I  3 ,17 )  RAT IO ,B2  

IB  11  I  )=1 .0 /TS I I )  
I1SA( I ) =ALOG(BASI I ) «SORTIT I I ) ) )  
SAn<  I ) =BSA t I  »  

t oo  CONTINUE 
c 
C DETERMINE  HENRYSS LAW PARAMETERS 
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D O  8  9  1 = 1 , 3  
C A L L  0 P L S P A ( N D E G , N 2 , T , S A B , W , Q , T U )  
E X 0 = Q ( 2 )  
D O  8 8  K = 1 , N 2  
S U B A I K )  =  ( 1 7 5 . 0 * ( 1 . 0 / T ( K ) ) / ( 2 1 6 . 0 « E X O )  )  
S U B B ( K ) = ( ( 1 0 9 4 8 0 . 0 / 9 3 3 1 2 . 0 ) * ( l ( 1 . 0 / T ( K ) ) / E X 0 ) » » 2 . 0 ) )  

8 8  S A B ( K ) = B S A t K ) - S U B A ( K ) - S U B B { K )  

8 9  C O N T I N U E  
A A  =  Q  1 1  )  
S U M = 0 . 0  
D O  7 7  K = 1 , N 2  
d B = T ( K ) * E X O + A A  
B B = S A B { K ) - B B  
S A B ( K ) = T C K ) » E X O + A A  

T ( K ) = 1 0 0 0 . 0 » T ( K )  
7 7  S U M = 5 U M + B B * B B  

C  =  N 2  
S  T O E V = S O R T ( S U M / l C - 1 . 0 ) )  
X A Z 0 = A A - 0 . 5 » A L 0 G ( 6 . 2 8 3 1 6 / ( 2 7 . 0 * E X O ) )  
A 2 0 = E X P ( X A Z 0 )  
W R I T E !  3 , 3 0 ) E X 0 »  X A Z O , A Z O , S T D E V  
W R I T E ( 3 , 1 6 9 )  
W R I T E ( 3 , 1 7 0 )  ( B A S { K ) , B S A { K ) , S A B ( K ) , T ( K ) , T S ( K ) , K = 1 , N 2 )  

9 9  C O N T I N U E  
1 0 0 0  C O N T I N U E  

S T O P  
E N D  
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c  
c  

SUBROUTINE CORR(NAtAV)  
C  
C  SUBROUTINE  THROUGH WHICH CURVE F ITT INGS ARE PREFORMED,  PTS .  ARE 
C  EL IM INATED AND DEGREE OF  BEST  F IT  I  IF  NECESSARY )  IS  DETERMINED.  
C  

D IMENSION AY(1 ) ,ST I9 ) ,BX I20 ) .BY (201 .W l20 ) .D IF (20 ) . LP I201 .B« (201  
COMMON PRESSI20 ) , LX I2O I ,COI4 ,5 ) ,KPTS I4 ,S I , LPTS I4 ) , IT ,MX  
COMMON 2120 ) ,M1 ,M2 ,NX ,ALPHAI20 ) .M6 ,SMI9 )  
REAL«8 00(10)  
TU«0 .0  
DO 1  NDEG 'H1 .H2  
1F INX)56 ,56 ,35  

56  CONTINUE 
DO 13  1=1 ,NA  
LP ( I )=LX I I )  
H ( I ) -Z ( I )  
BA I I ) 'ALPHA( I )  
BX ( I ) -PRESS( I )  

13  BY( I ) »AY( I )  
GO TO 37  

35  CONTINUE 
DO 38  1=2 ,NA  
LP ( I - 1 )=LX(11  
Wd-ll-Zd) 
BX( I - l ) =PRESS(n  
BA( I - l ) =ALPHA( I )  

38  BY( I - 1 )=AY( I )  
37  CCNTINUE 

MM=0  
M =  1  
DO 21  1=1 ,4  

21  KPTS( I , 1 )»0  
NB 'NA-NX  

4  M=M+1  
24  CONTINUE 

S=0 .0  
00  39  1=1 ,NB  

39  S<S«BA(n<RA( I1  
C=NB-1  
BETA=SQRTIS /C )  
CALL  OPLSPAtNOEG,NB ,BX ,BY ,W,OQ,TU)  
I -NDEG+ l  
SUM=0 .0  
DO 2  J -1 ,NB  
A 'OOI l )  
DO 3  K=2 ,L  

3  A  =  A«Q0<K)»BXU)«»1K-1 )  
D IF ( J )=BY1J ) -A  

2  SUM=SUM*OIF (J )«O IF I J )  
SM(NDEG)=SUH 
ST (NOEGl=SORTtSUM/C)  
NC 'NDEG+1  
DO 16  J=1 ,NC  

16  CO(NDEG,J )=OQ(  J )  
IF (ST INDEG) -1 .2«BETA)5B ,58 .36  

58  LPTS(NDEG) -NA-NB*1  
WRITE !3 ,100 )  NDEG,ST1N0EG) ,BETA  
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100  FORMAT«a EXIT  1  @,10X I10 ,2E20 .4 )  
M2«NDEG 
GO TO 59  

36  IF (MM)9 ,25 ,9  
25  IF<MX)9 ,5 .9  

5  RMAX '0 .0  
00  6  l " l ,NB  
IF«RM.X - *BS ID IF ( I ) ) )  7 , 7 , 6  

7  RMA*«ABS( 0 1 F i n  )  
MT« I  

6  CONTINUE 
l F IBX tHT) -1 .0 )29 ,61  , 29  

61  WRITE(3 ,62 )  NOEG 
62  F0 f tMAT( /3  EX IT  2  LARGEST DEV .  AT  10 ,0 )  OEG.  =3 ,110 / )  

GO TO 9  
29  IF I1 .5»ST(NDEG) -RMAX)8 ,63 ,63  
63  WRITE I3 ,64 )  N f i ,MT ,NDEG,ST INDEG) ,RMAX 
64  FORMATIa  EX IT  3  9 , 315 ,2E20 .4 )  

GO TO 9  
8  CONTINUE 

00  10  I ' l ,NB  
IF ( I -MT)10 ,17 ,12  

12  BX ( I - n =BKU l  
8Y I I - 1 I *BY( I I  
L P ( I - l ) = L P C n  
BAU-D 'BA I l )  WI1-1)=WII) 
GO TO 10  

17  KPTS INDEG,H)XLP IMT)  
10  CONTINUE 

NB-NB-1  
IF (M-M6)4 ,11 ,11  

11 MM=1 
GO TO 24  

9  LPTS IN0EG) "NA-NB+1  
1  CONTINUE 

59  I T 'M l  
STHIN=ST(MU 
IF IM l -M2 )47 ,4B ,47  

47  M3 -M1*1  
DO 14  I «M3 ,M2  
IF IST I I ) -STMIN)15 ,15 ,14  

15  STHIN 'ST I I  I  
1 T'l 

14  CONTINUE 
48  RETURN 

END 
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c  
c  

SUBROUTINE  OPLSPMNOEG,NPTS,X ,V  .W .O .TUHYLO)  
C  
C  SUBROUTINE  TO PREFORM ACTUAL  CURVE F ITT ING 
C  T ITLE-  ORTHOGONAL  POLYNOMIAL  METHOD OF  LEAST  SQUARES POLYNOMIAL  APPRO*  
C  AMES LAB  D ISTRIBUT ION NO.  360400266110003  
C  

D IMENSION X (1 I ,Y (1 ) .W(1 I  
REAL 'S  O l l l ,PN( l l ) ,PN l l lO ) ,SUM|4 l ,B ,C ,PNX,TMP 
IF  (TUWYLO)  2 . 1 , 2  

1  N -0  
C«0 .0  
PN I l I ' l .O  
GO TO 6  

2  C« -SUM(3 ) /SUM(4 )  
3  6—SUM(  1 ) /SUMI3 )  

SUM(4 ) -SUM(3 )  
N*N+1  
PN1(N)=0 .0  
PN IN+1 I=0 .0  
DO 4  J=1 ,N  
TMP.PNIJ :  
PN(J )=B«PN{J )+C«PN1IJ )  

4  PN1(J )=TMP 
DO 5  J«1 ,N  

5  PN(J+ I | :PNIJ+1)+PN1(J I  
6  UO 7  K ' I , 3  
7  SUM(K) -0 .0  

00  11  I ' L .NPTS 
PNX=1 .0  
J«N  

A I F  ( J )  10 ,10 ,9  
9  PNX=PN1J1»PNX»X(1  )  

J  =  J -1  
GO TO 8  

10  5UM( l )=SUM( l ) *WI l ) «X I I ) »PNX«PNX 
SUM(2 )»SUH(2 )  +  W(n»Y(  l ) »PNX 

11  SUM(3 ) 'SUM(3 I *WI I I «PNX*PNX 
0 IN+1 I=SUM(2 ) /SUMI3 )  
I F  (N )  3 , 3 ,12  

12  DO 13  J=1 ,N  
13  Q (J )»Q(J ) *g (N* l ) «PN(J )  

I F  (N -NOEG)  2 , 14 ,14  
14  RETURN 

END 
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c 
c 
C PROGRAM 3  PROGRAM 3  PROGRAM 3  PROGRAM 3  
C  
C  
C  PROGRAM FO PROCESSING LOW TEMP.  N ITROGEN MICROBALANCE DATA  BY  
C  
C  E ITHER THE USUAL  3  OP-LAYERS BET  EO.  OR THE aN-LAYERS BET  EQ.  
C  
C  WITH  N  =  1  AND N  VARIABLE  
C  
C  

D IMENSION NP I3 ) .P2 l3 ,9 ) ,AM(SO) fR I50 ) tO (50 ) ,P I50 I .GAGEI50 ) ,WA(50 ) .  
lRNA(50 ) , LX (50 ) fVA (50 ) ,PR(50 ) .PH150 ) ,PV I50 ) .PRESS(50 ) .O IF (50 ) .  
2PRUS0)  .PWUSO)  . LX1 (50 ) ,P1<91  .DA I  10 ) .TC I50 ) tPO(50 ) .WA l (50 ]  

REAL '8  €0 (5 )  
101  F0RMAT i4 I5 )  
102 F0RMATI4E2Q.8) 
103  FORMAT*15 ,3F5 .0 ,10A4 )  
104  rORMAT«F10 .3 ,2F lO .O ,3F10 .3 )  

C  
C  INPU l  PRESSURE GAGE CAL IBRAT IONS 
C  SEE  TABLE  3  FOR THE PDLYNOMINAL  COEFF IC IENTS 
C  

REAOd.lOn INP I I I , !  =  1 , 3 )  
DO 2  1 *1 ,3  
N3 -NP I I  I  
READI1 ,102 )  (P2 ( I , J ) , J ' 1 ,N3 )  

2  CONTINUE 
READI1 ,101 )  N l .NRET  

C  
C  N1  «  NO.  OF  DATA  SETS  
C  NBET  =  0  aN-LAYERS BET  EO.  USED 
C  NBET  '  1 aoD  -LAYERa  BET  EQ.  USED 
C  

DO 100  1=1 ,N1  
READ 11 ,103 )  N ,S ,E ,B , IDA IK ] ,K=1 ,10 )  

C  
C  N  =  NO.  OF  PTS . /SET ,  I  S .E ,B  )  ARE THE SET  UP  PARAMETERS,  DA  IS  THE 
C  DATA  LABLE 
C 

HEAD 11 ,104 )  ID (K ) ,AMtK ) ,R IK ) ,GAGEIK I .P IK ) ,TC IK ) ,K  =  l ,N )  
C  
C  
C  SEE  RESULTS  SECT ION FOR NOTAT IONS 
C  EXCEPT ION-  TC  '  EMF OF  TC  AT  EACH DATA  PT .  IMV)  
C  

W0 : |D I1 ) -B ) .AMI1 )+P (1 )»R I1 )  
WRI IE I3 ,105 )  
SH»S-E+WO 
HR=6 .2358E4  
AMUL=28014 .0  
WRIT  E l  3 , 106 )  IDA(K ) ,K=1 , I 0 )  
POO^O.O  
TSiO.O 
DO 3  K=2 ,N  
IF IGAGEIK ) -40 .154 )11 ,12 ,12  

11  NPRESS-NP I l )  
N4 -1  
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GO TO 15  
12  IF IGAGE(K ) -131 .807 )13 ,13 ,14  
13  NPRESS«NP(2 )  

N««2 
CO TO 15  

14  NPRESS 'NP(3 I  
N ' . »3  

15  CONTINUE 
DO 16  l = l ,NPRESS 

16  P1 IL )=P2 (N4 ,1 )  
PRESS<K-1 ) -P1 I1 )  
DO 17  t=2 ,NPRESS 

17  PRESS(K -U«PRESS!K -1 )+PUL)«GAGE(K )»« (L -1 )  
TC<K- l ) »87 .2S -64 .0« ITC IK1 -5 .040 )  
POIK -1 )=EXPI2 .30258» ( -339 .80 /TC(K - l 1 -0 .00563»TCIK -1 )+7 .7106 ) )  
WA(K - l ) > IHOtK ) -B )»AH(K )+P(K )»R IK ) ) -WO) / ISH /1000 .0 )  
RNAIK -1 )=WAIK -1 )«RR/AM0L  
LX IK - l ) =K - l  
VA lK -1 )=RNAt  K -1 )«0 .35941  
PR IK -1 )«PRESS(K -1 ) /P0 (K -1 )  
PW(K-l ) =PRESS lK-n / IVJA IK-l ) « lPO(K-l ) -PRESS(K-l) ) I 
TS :TS+TCIK -1 I  
P00=P00  +  P0 IK -1  )  

3  PV (K - l ) =PWIK- l ) *AMOLèPRESSIK - l l / IRR*TC IK - l l )  
N=N-1  
C 'N  
rs=TS/c  
POO=POO/C  
J«1  
DO 4  K=1 ,N  

C 
C  THE  CURRENT RANGE OF  RELAT IVE  PRESSURES SET  FOR THE APPL ICAT ION OF  
C  THE  BET  EOS.  IS  0 -0 .6 ,  BUT  SHOULD BE  CHANGED AS  MAY BE  REQUIRED.  
C  

I F IPR IK ) -0 .00 )4 ,5 ,5  
6  PR l l J ) cPR IK )  

PWl t J ) :PWIK )  
LX1 I J I=LX IK I  
WA1 IJ I=WAIK I  
J  =  J *  1  
GO r n  4  

5  I F (PR IK ) -0 .b0 )6 ,6 ,50  
4  CONTINUE 

•>0  CONTINUE 
NPTS=J -1  
WRITE  13 ,1141  SW,POO,TS  
WRITE I3 ,107 )  

C  
C  ALL  OUTPUT QUANTIT IES  ARE PER GRAM ADSORBENT 
C  

HR ITE I3 ,108 )  IWAIK ) ,VA1K) ,PR IK ) ,PRE$S IK ) , LX (K ) ,K»1 ,N )  
IF INBET)  41 ,40 ,41  

40  CALL  BETNINPTS ,PR l ,HA l , LX l )  
GO TO 100  

41  CONTINUE 
WRITEI3 .117 )  
WRITE I3 ,1C9 )  
WRITE  13 ,1101  <TC IK ) , P a i K ) ,PW(K) ,PV IK ) ,PR IK ) , LX IK ) ,K» l ,N )  
N0EG=1  

C  
C  KM =  1  NO PTS .  ARE EL IM INATED 
C fM  =  0  M6-1  PTS .  ARE EL IM INATED 
C  
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KM=L 
M6«A 
H«l  

7  M=M+I  
24  CALL  OPStNOEG,NPTS.PR l tPWl»CO)  

WRITE*3 ,111 )  
SUM=0.0  
SLOPE=CO(2 )  
A INT  =C0 (1 )  
00  8  K * l fNPTS  
A=A INT+SL0PE*PR1(K )  
D IF (K )=PWI IK ) -A  
SUM=SUM+n iF1K) *D IF (K )  
WRITE ! } , 112 )  PWl (K ) ,A ,O fF (K ) ,PR l lK ; , LX l (X )  

8  CQNTINUE 
C»NPTS-1  
ST=SORT(SUM/C)  
WRITE(3»113 )  SLOPE,A INT ,ST  
WM«1 .0 / (SL0 IPE  +  A INT )  
SA=WM*3 .397  
CC= l . 0 / (A INT#WM)  
WRITE !3 ,115 )  WH,SA ,CC 
IF (MM)  9 , 25 ,9  

25  RMAX=0 .0  
00  29  K=1 ,NPTS  
IF (RMAX-ABS(D IF (K ) ) )  27,27,29 

27  RMAX=ABSID IF (K ) )  
MT=K 

29 CONTINUE 
IFIST-RMAX) 28,9,9 

28  CONTINUE 
L2«LXUMT)  
DO 30  K=1 ,NPTS  
IF (K -MT)30 ,30 ,32  

32  PW1(K -1 )=PW1(K )  
PRHK-1 )»PR1 IK )  
LX1 (K -1 ) "LX1 (K )  

30  CONTINUE 
NPTS-NPTS- l  
WRITE(3 ,116 I  LZ  
IF<M-M6)  7 , 31 ,31  

31  KM=1  
GO TO 24  

9  CONTINUE 
105 FORMAT ia i a ,20XaHICROBALANCE DATA PROCESSED TO OBTA IN  SURFACE AREA 

lUS iNG B .E .T .  EOUAT IONa / / )  
106  F0RMAT(45X10A4 / / )  
107  FORMAT!T21 ,aWT.  ADS.  (MO)  VOL .  AOS.  STP  (CO 
I  PRESSURE (KM)  PT .  =3 / / )  

108  FORMATI10X4F20 .4 ,110 )  
109  FORMAT!a+a ,T37 ,aP /W»(P0 -P )  P /V# IPO-P )  

IS / / )  
110  F0RMAT!7X2F10 .2 ,2E20 .4 ,F10 .4 , I IO )  
111  F0RMAT( / / / / T27 ,aP /W#(P0 -P )  CALC.  P /W" !PO-P )  

1  p /po  PT .  =a / / )  
112  FORMAT!17X3E20 .6 ,F10 .4 , I 10 )  
113  FORMAT I / / T2 l ,aSL0PE ,E15 .6 ,10X31NTERCEPT  E  15 .6 , lOXSST .  DEV .  =  

i a , E l 2 . 4 / )  
114  FORMAT!T l l , aSAHPLF  WT.  =a ,F10 .4 ,a  MG.3 ,1OXaAVG.  PO =  a ,F10 .3 ,d  MM 

i a , i oxaAVG.  TEMP.  - a , F i o . 3 ,a  DEG KS / / / / )  
115  FORMAT!T21 ,AWM * a ,F10 .4 , a  MG.a , lOXaSURFACE AREA 3a ,F10 .3 ,a  M.M/GA 

i i o x a c  • a , F i o . 4 / / / / / )  
116  FORMAT!  T41 , 5 )P0 INT  EL IM INATED FROM ABOVE SET  IS  =3 ,15 / / )  
117  FORMAT( / / / / 10XaT  DEG K  POS)  
100  CONTINUE 

STOP 
END 

P /PO 

P /PO PT .  =  

D IFFERENCE 
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c  
c  
c  

SUBROUTINE  BETN(NPT5 iX .Y ,LL )  
C  
C  SUBROUTINE  FOR THE APPL ICAT ION OF  THE  aN-LAYER3  BET  EQ.  
C  FOLLOWING THE METHOD OF  JOYNER ET  AL .  JACS 670  2182  ( 1944 )  
C  

D IMENSION X (1 ) ,Y (1 ) ,PH I (50 ) ,THETA(50 ) , LL I1 )  
REAL 'S  C0 I2 )  
NOEG= l  
A=1 .0  
L * - l  

1  CONTINUE 
DO 2  K« l ,NPTS  
PH I (K )= (X (K ) * ( ( 1 . 0 -X (K ) ) *#A -A* (1 .0 -X<K) )#X (K ) * *A ) ) / ( ( 1 . 0 -X (K ) )#»2 )  
THETAIK )= (X<K)» (1 .0 -X (K )»»A) ) / { 1 . 0 -X IK ) )  

2  P H I (K )=PHI (K ) /Y IK )  
CALL  OPS(NDEG,NPTS,THETA,PH I ,CO)  
SL=C0(2 )  
A I«co i l )  
SUM=0 .0  
00  i  K« l ,NPTS  
U |F=PHI (K ) - (A I+S l *THETA(K ) )  

^  SUM=SUM+OIF#NIF  
in  L )9 ,4 ,6  

4  L =  l  
5  SlJMl  =SUM 

A=A+DA 
r .o  1(J  I  

6  |F |SUH-SUML)S ,7 ,7  
7  |F (ABS iDA) -0 .02 )9 ,8 ,8  
B  nA= -DA /2 .0  

G O  r o  5  
9  CONTINUE 

C=NPTS-1  
WM' l .O /SL  
bT=SORT(SUM/C)  
CC =  l .O /U I«WM)  
SA*WM«3.397  
WRITE I 3 ,10)  
WRII  Et  3 ,  11 )  (PHMK)  ,THETA(K  )  , LL iK )  ,K=1 ,NFTS)  
WRITE<3,12)  SL ,A I ,ST  
WRITE!3,13) WM,SA,CC 
WRIT El 3 ,14) A 

10  FORMAT( / / / 47X3PHI (N ,X )  THETA(N ,X )  PT .  =3 / / )  
U  n iRMAT(35X2E20 .4 , I  10 )  
12  FnRMAT( / /T2 l . aSLOPF  -3 ,E15 .6 ,10X31NTERCEPT  =3 ,E15 .6 ,1OXSST .  DEV .  =  

ia ,E l? .4 / )  
1 )  rURMAT(T21 ,aWM =a ,F10 .4 ,3  MG.3 ,10X3SURFACE AREA =3 ,F IG .3 ,3  M*M/G3  

l i o xac  =3 ,F10 .4 / / )  
14  I  ( lRMAT(50XaN =3 ,F7 .2 )  

IF  n  )15 ,16 ,16  
15  1=0  

A =  2 .  0  
( )A= -0 .  1  
GO i n  I  

16  RETURN 
FNl) 
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c  
c  
c  

SUBROUTINE  OPStNDEG»NPTS•X ,Y»Q)  
C  
C  SUBROUTINE  OPS IS  THE SAME AS  SUBROUTINE  OPLSPA WITHOUT WEIGHTS AND 
C  IS  USED TO CURVE F IT  THE OATA 
C 

DIMENSION X I I ) .Yd )  
REAL*8  g ( l ) ,PN I11 ) ,PN1 (10 ) ,SUM(4 ) ,B ,C ,PNX,TMP 
N*0  
C  =  0 .  0  
PN< I )= l .O  
GO TO 6  

2  C= -SUM(3 ) /SUM(4 )  
3  B  =  -SUM< n /SUM(3 )  

SUM(4 ) "SUMI3 )  
N  =  N+  1  
PNUN)«0 .0  
PN IN+1 )=0 .0  
DO 4  J= l ,N  
TMP=PN(J )  
PN(J )=B#PN(J )+C*PN1#J )  

4  PN l ( J )«TMP 
DO 5  J=1 ,N  

5  PN(  J  +  1 ) -PN(  J  +  D+PNU J )  
6  DO 7  K= l , 3  
7  SUM(K)«0 ,0  

DO I I  I=1 ,NPTS  
PNX= l .O  
J  =  N  

B  I F<J )  10 ,10 ,9  
9  PNX=PN4J )+PNX#X( I )  

J ' J -  I  
GO 10  8  

10  SUM(  l ) =SUMU )+Xn  )»PNX«PNX 
SUM!2 )=SUM(2 )+Y ( I ) *PNX  

11  SUM(1 )=SUM(3 )+PNX*PNX 
0<N+ l )aSUM<2) /SUM( : ;  
I  F IN )  3 , 3 ,12  

IP  no  13  J=1 ,N  
13  U (J )=U<J )+U(N+1 )#PN<J )  

IF (N -NDEC)  2 , 14 ,14  
14  RETURN 

END 
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P R O G R A M  4  P R O G R A M  4  P R O G R A M  4  P R O G R A M  4  

P R  O f , R A M  T O  E V A L U A T E  S U R F A C E  A R E A S  A N D  G A S  -  S O L I D  I N T E R A C T I O N  

P n T E N T I A L S  ? R O M  H E N H Y S S  L A W  D A T A  

C  S U B R O U T I N E  G P L S P A  i S E E  P R O G R A M  2  )  M U S T  R E  S U P I ' L l F C  A I  R U N  f l M f  

O l M e  N S I C N  H ( 2 0 )  , R A S I ? 0 ) . S A B I 2 0 ) , D A T L I  1 0 ) , B S A ( 2 0 ) . T I  2 0 )  ,  Î S ( 2 0 ) ,  

i s u n P i z o ) , s i m A i 2 0 )  
R E A L # n  Q I S )  

3 0  r C R M A T  I  ? O X f l H - F  t  X O )  = , F 1 0 . 2 , 1 0 X 9 H L N ( A Z n )  -  ,  F  1 0  .  4  ,  1  0  X  5 H A  Z  L *  = . f i r . 4 ,  

l l O X f H S T O E V  ? , F 1 0 . 5 / / )  

1 0 1  h C R M A T ( 1 1 0 , 1 0 A 4 )  

I C 2  rr .RMATlRFlO.O)  
1 0 3  F O R M A T ( a i a , 2 0 x a  E V A L U A T I O N  l l f  S U R F A C E  A R E A S  A N D  G A S - S O L I H  I N T E R A C T  

l i n N  P D T F N T I A I S  F R O M  H E N R Y S  L A W  D A T A J )  

1 0 4  r i l R M A T  I  / / /  1 0 X 1 0 A 4 / /  )  
l A Q  F O R M A T  I / / l u x  0  H A S  L  N  I  8  A  S  I  T  )  -  1  /  2  )  f X P  l . N d U S I  

l I ) - l / 2 )  C A L C  l O O O / T  T  D E G  K , Û / / )  
1 7 0  r o R M A l I 1 0 X Î F ^ 0 . 4 , 2 F ? 0 . 3 )  

nn  1  1 = 1 , 2 0  
1  w i l l = 1 . 0  

i u=o .o  
Nnf.f, = i 

W R l î F O i l O î f  
4  R E  A N  I  I , 1 0 1  I  N P T S ,  ( O A T L ( K ) , K  =  1 , 1 0 )  

C  
C  N P T S  =  N U .  O F  D A T A  P T S . / G A S ,  D A T L  =  D A T A  L A D L t  

C  N P T S  =  0  I N D I C A T E S  N O  M O R E  D A T A  T O  B E  P R O C E S S E D  

C  
I F 1 N P T S ) 2 , 1 0 0 . 2  

2  R E A M ( 1 , 1 0 2 )  ( H A S ( K ) , K = 1 , N P T S )  

R F A O d . l O ? )  I T S I K ) , K  =  1 . N P T S )  

C  
C  B A S  -  Z I  R U  E X C E S S  V O L U M E ,  T S  =  T E M P .  ( D E G  K )  

C  
no  ^ K = l , N P T S  

T I K I = 1 . 0 / T S ( K )  
M S A l K ) = A L n G I H A S I K ) » S Q R T I T ( K ) ) )  

3  S A H l K ) = H A S I K )  

W R | I t l 3 » 1 0 4 )  I O A T L ( K » , K = 1 , 1 0 )  

1 ) 1 1  H 9  1  =  1 , 3  

C A L I  n P L S P A I N D E G . N P T S , T , S A h , W , O . T U )  
K x n = L ( 2 )  
U N  M M  K = I , N P 1 S  
S l j f i h  I K  )  =  (  I  1 0 * ) 4 H O . O / 9  3 3 1 2  . 0 »  •  I  I  I  1 . 0 / T  I  K  )  )  /  E  X U  )  •  •  ? . 0  )  )  
S I j B A  I K )  =  ( 1 7 S . O * I 1 . 0 / T | K ) ) / I 2 1 6 . 0 " E X U I )  

f l f l  S A n | K ) « B S A | K  ) - S U H A | K ) - S U B P ( K )  

n y  f . L N i  i N u e  
A A T Q I I  )  

S I I M r O . O  

n i :  I t  K - 1  . N i ' T s  
M n  =  T  I K )  # F  x u *  A A  

MM^SAniK)-HH 
S A I U  K )  =  T ( K ) " I X O  +  A A  
I  I K )  = 1 0 0 0 . 0 ' T I K )  

77 suM= suM+nn#Hn 
C ' N P T S  
S T I i r  V = S O R T  I S U M /  I C - 1  . 0 )  )  
* A / f l = A A - O . S « A l .  ( ) ( i ( < ) . 2 "  n 6 / l 2 / . 0 » E X n )  )  
A Z n = f : X P l X A / 0 )  

w R i T t i 3 , i O )  r x o . x A / u , A / U , S T n i V  
W R I T E ( 3 , 1 6 9 )  

W R I T E ( 3 , 1 7 0 )  I  B A S  I K ) , H S A  1 K ) , S A B ( K ) , T ( K ) , T S ( K ) . K  =  I , N P T S )  
( i f )  T L )  4  

1 0 0  S T O P  

E N D  
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PROGRAM 5  PROGRAM 5  PROGRAM 5  PROGRAM 5  

PROGRAM r o  EVALUATE SURFACE AREAS FROM EXPERIMENTAL  VALUES OF  B2 /A  VS .  T  

BY  METHODS OF  

BARKER •  EVERETT  AND/OR JOHNSON * •  KLE IN  

COMMON NP IS ,E3 ,S IGMA3 ,GLAB(  12 ) ,B2E(  101 iT I  101 ,GAMMA(25 ) ,GAMMAl125 ,  
1251 ,S ,A ,EO,ZETA ,JA  

101  F0RHAT<312 , I 4 , 2F10 .0 ,12A4 )  
102  FORMAT!2F10 .0 )  

CALL  GA 
CALL  GA l  
READ I  1 ,101 )  NGAS 

NGAS «  NO.  OF  GASES 
00  4  KK=1 ,NGAS 
REAOd  ,  101 )  JA ,  JB , JK ,NPTS ,E3 ,S IGMA3 ,  (GLAB(K ) ,K  =  1 ,12 )  

GAS-GAS INTERACTION POTENTIAL  INCREMENTED OVER RANGE OF  
VALUES I  SEE SUBROUTINE  BARKER)  

REST  F IT  PARAMETERS OBTAINEED 
REST  F IT  PARAMETERS DETERMINED FOR BARKER-EVERETT  MONOLAYER 
BARKER-EVERETT  MONOLAYER POTENTIAL  NOT USED 
REST  F IT  PARAMETERS DETERMINED FOR S INANOGLU-P ITZER MONOLAYER 
S INANDGLU-P ITZER MONOLAYER POTENTIAL  NOT USED 

NO.  PTS . /GAS ,  E3  •  S IGMA3  ARE BULK  GAS INTERACTION PARAMETERS,  
GLAB  =  DATA  LABLE  

READ I  I , 102 )  IB2E(K ) ,T IK ) ,K=1 ,NPTS)  

B2E  =  EXP ,  VALUE OF  B2 /A ,  T  =  TEMP.  I  OEG K  )  

J A  s  0  

J A  =  1  
J B  =  0  
J f i  =  1  
J C  =  0  
J C  =  I  
N P T S  * 

I F ( j n )2 ,1 ,2  
1  C A L L  B A R K E R  
?  I F I J K ) 4 , ) , 4  
3  C A L L  K L E I N  
4  C O N T I N U E  

S T O P  
CNO 
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c  
c  

SUBROUTINE  BARKER 
C  
C  SUBROUTINE  FOR APPL ICAT ION OF  BARKER-EVERETT  MONOLAYER POTENTIAL  
C  

D IMENSION X (  10 )  .Y t lO ) .B8 ( lO ) ,B2T i10 )  ,B2EX I10 )»B2TX«10 )»TT (10 ) ,  
lO lF i 10 ) ,AR t10 )  

COMMON NPTS ,E3 ,S IGMA3 ,GLAB(12 ) tB2E(10 ) ,T<10> ,GAMMA J 25 ) ,GAMMAH25r  
125 ) fS rA rEO,ZETA ,JA  

WRITE(3 ,99 )  
WRITE(3 ,100 )  IGLAB IK ) ,K=1 ,12 )  
LL=0  
E2=0 .9 *E3  
0ELTF=-10 .0  
C 'NPTS  
IF ( JA )21 ,20 ,21  

C 
C  SETS  UP  INCREMENTS FOR GAS-GAS POTENTIAL  I F  JA  =  0  
C  I F  TH IS  SFCT ION IS  CHANGED,  THEN STATEMENT BELOW MUST ALSO BE  CHANGED.  
C  

?0 LL=-l 

E2=0 .S*E3  
DE=F2 /20 .0  
M=1  

21  CONTINUE 
00  1  K=1 ,NPTS  
Y IK )=B2E<K)  

1  X ( K ) =1 .0 /T (K )  
2  A&=0 .0  

no 3 J=1,NPTS 
eO=4.0*E2*X(J) 

CALL  PS I l  
BB IJ )=Y (J ) /S  

3  AA=AA+8B(J )  
AA=AA/C  
X I=SQRTIE2 /F3 )  
S IGMA2= t IGMA3» ( (1 .0 /X I ) # * (1 .0 /6 .0 ) )  
ALPHA=SIGMA2»S IGMA?»18921 .  
ARFA  =ALPHA/AA  
SUM-0 .0  
on  4  Jei.NPTS 
ARC J  )=ALPHA/RB(J )  
f ) I FJ  J )  =  ABS(BR(  J ) -AA )  

4  SUM:SUM+DIF I J ) *O IF<J )  
I FWA)24 ,22 ,24  

7 2  WRITE(3 ,399 )  
WRITE(3 ,400 )  E2 ,AA ,SUM.X I ,S IGMA2 ,AREA 
WRI I r ( 3 , 401 )  (B2E(K ) ,BB(K I ,D IF (K ) ,AR(K ) ,T (K ) ,K=1 ,NPTS)  

r. 
I F (M-20 )23 ,23 ,24  

C  
C  TO BE  CHANGED IF  NO.  OF  INCREMENTS ABOVE ARE CHANGED 
r. 

23  M=M*1  
i2 = t 
C.O 1(1 2 

24  CCNÎ  I  NUE 
IF(IL)75,5,7 

5 LL^l 
6  SUMI=SUM 

F2 'E2*nELTE  
IF (E2 -1 .1 "E2 )  301 ,301 ,10  
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301  IF ( (E2 /E3 ) -0 .5 )10 ,2»2  
7  IF (SUM-SUMl )6»8»8  
8  I F  (ABS(OeLTE) -O . I ) 10 ,9 ,9  
9  DELTE=-DELTE /2 .0  

GO TO 6  
10  CONTINUE 

STDEV=5QRT(SUM/<C-1 ) )  
SUMsQ.O  
DO I I  K* l ,NPTS  
B2EX(K )=B2E(K ) /AA  
B2T (K )=AA«Y(K ) /BB IK )  
B2 rX (K )=R2T(K ) /AA  
DAF=ALPHA#(  UO /BB tK ) - l .O /AA)  
SUM=SUM+nAF»DAF  

11  TT IK )=E2 /T IK )  
DEV-SORT(SUM/C)  
WRITE(3 ,101 )  
WRITE(3 ,102 )  ( n2E ( K ) ,B2T ( K ) ,H2EX ( K ) ,B2TX ( K ) , TT (K ) ,T ( K ) , K = l , N P T S )  
WRf rE (3 ,103 ;  AREA,OEV,S rOEV 
WRITE  I  3 ,104) E3 ,S IGMA3  
WRITE !3 ,105 )  E2 ,S IGMA2 ,X I  

99  F0RMAT4a ia ,10X3  EVALUAT ION OF  SURFACE AREA FROM EXPERIMENTAL  VALUE 
IS  OF  B2 /A  VS .  TEMP.  BY  THE METHOD OF  EVERETT+  RARKERa / / )  

100  FnRMAT!40X12A4 / / / )  
101  FORMATO B2 /A  EXP B2 /A  THEO B2  EXP  
I  B2 THEO E2 /KT  T  PEG K  a / / )  

102  F0RMAT!4E20 .6 ,2F20 .4 )  
103  FGRMAT( / / / / 20XSSURFACE AREA =a ,F l 0 .2 ,a  M*M/G  • / - a ,F  7 .2 ,10XaSTDEV 

1  =a ,E10 .4 / / )  
104  F0RMAT(20XaE3  =3 ,F IO .3 , lOXSSIGMA3  =3 ,F10 .3 / / )  
105  F0RMATI20X3E2  ' 3 ,F  10 .3 ,10X35  IGMA2  =3 ,F10 .3 ,10xax I  =a ,F lC .3 )  
399  F0RMAT!20X3  B2 /A  EXP  ALPHA/A  D IFFERENCE 

1  AREA T  CEG K3 )  
401  F0RMAT!20X ,E15 .4 ,4F15 .2 )  
400  F O R M A T ! / / 5 X 3 E 2  = 3 , F 8 . 2 , 5 X 3 A V G .  ALPHA/A  = 3 , F  10 . 2 , 5 X 3 S U M  = 3 , E 10 .4 ,  

l 5 X a X I  = a , F 6 . 2 , 5 X a S I G M A 2  = 3 , F 6 . 2 , 5 X a A V G .  A  = 3 , F 8 . 2 / )  
75  RETURN 

END 



www.manaraa.com

220 

c  
c  

SUBROUTINE  KLE IN  
C 
C  SUBROUTINE  FOR APPL ICAT ION OF  S INANOGLU-P ITZER MONOLAYER POTENTIAL  
C  

D IMENSION 10 ) ,Y (10 ) , 8B1 I0 ) .CC(10 ) tB2EX(10 ) ,B2T (10 ) fB2TX(10 ) ,  
I TT I IO )  

COMMON NPTS ,E3 ,S IGMA3 ,GLAB(12 ) •B2E(10 )«  T {10 ) *GAMMA(25 ) ,GAMMA1(25 ,  
125 ) ,S ,A ,E0 , :ETA ,JA  

WRITE(3 ,99 )  
HR ITE(3 ,100 )  (GLAB(K ) ,K=1 ,12 )  
00  I  K«1 ,NPTS  
X lK )« l .O /T IK )  
Y (K )»B2E IK )  
E0«4 .0 *E3#X(K )  
CALL  PS I l  

1  BB(K ) *S  
LL»0  
D2ETA=-0 .01  
ZETA=-0 .03  
C=NPTS 

2  AA«0 .0  
DO 3  K»1 ,NPTS  
CALL  PS I2  
CC(K )=Y(K ) / ( 88 (K )+S )  

3  AAcAA fCCIK )  
AA=AA/C  
SUM=0 .0  
on  4  K« l ,NPTS  
D IF=ÛA-CC{K )  

4  SUM=5UM+DIF#D IF  
ALPHA=SIGMA3*S IGMA3"18921 .  
AREAsALPHA/AA  
ETA=-ZETA  
IF (LL )5 ,5 ,7  

5  LL«1  
6  SUMl -SUM 

ZETA=ZETA+DZETA 
IF (ABS tZETA) -0 .2 )  2 , 10 ,10  

7  IF (SUM-SUM1I6 ,8 ,8  
A  I F (ABS(DZETA) -0 .001 )10 ,9 ,9  
9  DZETAB-nZETA /2 .0  

GO TO 6  
10  CONTINUE 

STDEV=SWRT(SUM/1C- l ) )  
S IGM&2=S IGMA3  
RO =  S  IGMA3« (2 -0» • I  1 . 0 / 6 .0 ) )  
ROO=RO 
DO 11  K=1 ,1000  
5 IGMA2=S IGMA2+0 .001  
AB«S  IGMA3 /S IGMA2  
ETA l=<AR# .3 .0 ) -<AB* *9 .0 )  
IF IETA-ETA1)12 ,12»11  

11  CONTINUE 
12  CONTINUE 

DO 13  K= l , 1000  
Rnn=RUUf0.001 
A0«s IGMA3 /R00  
FTA l *20  
eTA l=2 .0 * (AR" *3 .0 ) -4 .0» (AB* *9 .0 )  
IF<ETA-ETA l )14 ,14 ,13  

I  3 CONTINUE 
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14 CONTINUE 
E 2 — t A . 0 » E 3 « <  A B « « 1 2 . 0 - A B » » 5 . 0 » E T A » A B » » 3 . 0 ) )  
S » J H = 0 . 0  
0 0  1 5  K = 1 , N P T S  
B 2 E X I K ) x B 2 E l K ) / A A  
8 2 T (K )» :AA» Y I K ) / C C ( K )  
B 2 T X ( K ) = B 2 T ( K ) / A A  
D I F « A L P H A » l 1 . 0 / C C ( K ) - 1 . 0 / A A )  
S U H = S U M * D I F » O I F  

1 5  T T ( K ) = E 2 / T ( K )  
D E V » S O R T ( S U M / C )  
W R I T E I 3 , 1 0 l )  
W R I T E  1 3 , 1 0 2 )  1 B 2 E ( K ) , B 2 T I K ) , B 2 E X ( K ) , B 2 T X 1 K ) , T T I K ) , T 1 K ) , K  =  1 , N P T S )  
W R I T E ( 3 , 1 0 3 )  A R E A . D E V . S T D E V  
W R I T E I 3 , 1 0 4 )  E 3 , S I G M A 3 , R 0  
W R I T E J 3 , 1 0 5 )  E 2 , S I G M A 2 , R 0 0 , E T A  

9 9  F O R M A T < a i a , a  E V A L U A T I O N  O F  S U R F A C E  A R E A  F R O M  E X P E R I M E N T A L  V A L U E S  
1 0 F  B 2 / A  V S .  T E M P .  B Y  T H E  M E T H O D  O F  J O H N S O N  •  K L E I N a / / )  

1 0 0  F 0 R M A T I 4 0 X 1 2 A 4 / / / )  
1 0 1  F O R M A T O  B 2 /A  E X P  B 2 / A  T H E O  B 2  E X P  
I  B 2  T H E O  E 2 / K T  T  O E G  K  3 / / )  

1 0 2  F 0 R M A T I 4 E 2 D . 6 , 2 F 2 0 . 4 )  
1 0 3  F O R M A T ! / / / / 2 0 X a S U R F A C E  A R E A  = a , F 1 0 . 2 , a  M*M / G  + / - a , F 7 . 2 , 1 0 X a S T D E V  

1  = a , E 1 0 . 4 / / )  
1 0 4  F 0 R M A T < 2 0 X a E 3  « 3 , F 1 0 . 3 , 1 0 X 3 5 1 G M A j  = 3 , F 1 0 . 3 , 1 O X 3 R O  = a , F 1 0 . 3 / / )  
1 0 5  F 0 R M A T < 2 O X 3 E 2  = 3 , F 1 0 . 3 , l O X S S I G H A 2  = 3 , F 1 0 . 3 , l O X a R O  = 3 , F  1 0 • 3 , 1 0 X 3  

l E T A  = 3 , F 1 0 . 4 )  
R E T U R N  
E N D  
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c  
c  

SUBROUTINE  GA 
C  
C  SUBROUTINE  TO EVALUATE GAMMA FUNCTIONS FOR B -E  MONOLAYER POTENTIAL  
C  

COMMON NPTS ,E3 ,SFGMA3 ,GLABI12 ) ,B2E(10 ) ,T (10 ) ,GAMMA(25 ) ,GAMMA 1 (25 ,  
125 ) ,S .A ,E0 ,2ETA»JA  

GAMMA!1 )= -6 .77274  
G A M M A ( 2 ) = 2 . 6 7 8 8 8  

00  1  J=3 ,25  
R  =  J  

1  GAMMAtJ )  =  ( n . 0« {B -3 .0 ) -1 .0 ) / 6 , 0 )«GAMMA(J -2 ) / ( ( 6 - I • 0  J • (B -2 .0  H  
RETURN 
END 

C  
C  

SUBROUTINE  GA l  
C  
C  SUBROUTINE  TO EVALUATE GAMMA FUNCTIONS FOR S -P  MONOLAYER POTENTIAL  
C  

COMMON NPTS ,E3 tS IGMA3 ,GLAR(12 )»  B2E  (  10  )  »  T (  10  )  ,GAMMA(25 ) ,GAMMA1(25 ,  
125 ) ,S ,A ,E0 ,2ETA ,JA  

GAMMA1(1 ,1 )=11 .4984  
GAMMA1 I2 ,11=1 .33944  
GAMHAU3 ,1 ) 5 0 , 25364  
GAMMAH4 ,  1 )=0 .06271  
GAMMA1U,2 )  =  1 .52187  
GAMMAX(2 ,2 )=0 .564395  
GAMMAl (3 ,2 )=0 .15970  
GAMMAM4,21=0 .04961  
DO 2  K=1 ,2  
R  =  K  
DO 1  J«5 ,25  
C«  J  

1  GAMMAMJ ,K )  =  1 (3 .0« (C -5 .0 ) *6 .0« IB -1 .0 )  +  1 . 0 ) / 12 .0J  «GAMMA 1  I J - 4 ,K  )  /  (C«  
1 IC -1 .0 ) * (C -2 .0 ) " (C -3 .0 ) )  

2  CUNT I  NUE 
no  4  J=1 ,25  
C«J  
DO 3  K=3 ,2b  
B  =  K  

3  GAMMAMJ ,K )= ( (3 .0» (C -1 .0 )+6 .0« lB -3 .0 )  +  l  .  0  )  /  1  2  .  0  )  «GAMMA 1  f  J ,K -?  )  /  (C«  
1 IH - I . 0 )«<B-2 .0 )  )  

4  CUNT I  NUE 
RETURN 
END 
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c  
c  

SUBROUTINE PSIL  
C 
C SUBROUTINE TO EVALUATE THE REDUCED SECOND GAS-GAS V IR IAL  COEFFIC IENT 
C FOR THE B -E  MONOLAYER POTENTIAL  
C  

COMMON NPTS#E3,S IGMA3,GLABI  12  )  »B2E(10 )TT(10 ) •GAMMA(25)TGAMMAI (25 ,  
125 ) ,SFA,EO,ZETA,JA  

A«TEO«»T1 .0 /6 .0 )  ) • ! 1 .0 /12 .0 )  
S=GAFMA(1 )  
JX=L  
p%E0*#0 .5  
TERM=1 ,0  

1  TERM=TERM*P 
B=TERM*GAMMA(JX*1 )  
S = S^B 
IF (B -1 .0E-6 )2 ,3 ,3  

3  JX=JX+1  
IFUX-25 )4 ,5 ,5  

4  GO TO 1  
5  WRITET3 ,6 )  
6  F0RMAT<20X , aGAMMA TABLE HAS BEEN OVERRUNS)  
2  S=-A*S  

RETURN 
END 

C  
C  

SUBROUTINE  PS I2  
C  
C  SUBROUTINE  USED IN  ADDIT ION TO PS I l  TO EVALUATE THE REDUCED SECOND 
C  GAS-GAS V IR IAL  COEFF IC IENT  FOR S -P  MONOLAYER POTENTIAL  
C  

COMMON NPTS ,E3 .S IGMA3 ,GLA6 I12 ) ,B2E I  10 ) ,T t10 ) ,GAMMA!25 ) tGAMMA I { 25 ,  
125 ) ,S ,A ,EOfZETA .JA  

S*0 .0  
n= 1 .0  
CO 3  M= l , 25  
D=D*ZETA  
Y  =  M-  1  
no 2 N« l  ,25 
X =  N-  1  
P =  E0«»U2 .0 'X f3 .0#Y  +  3 . 0 ) / 4 . 0 )  
0«P«GAMMAUM,N)»n  
S  =  S+Q 
l F iABS IQ) - l . 0E -6 ) l , 2 , 2  

1  1F<N-1 )4 ,4 ,3  
2  CONTI  NUE 
3  CONTINUE 
4  S ' -A»S  

RETURN 
END 
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